(3.235.191.87) 您好!臺灣時間:2021/05/13 14:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林柏瑋
研究生(外文):Po-Wei Lin
論文名稱:利用真空變壓吸附法純化生質沼氣之模擬暨實驗設計研究
論文名稱(外文):Simulation of Biogas Upgrading by Pressure Swing Adsorption Process with Study of Design of Experiments
指導教授:周正堂周正堂引用關係楊閎舜
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:188
中文關鍵詞:變壓吸附程序生質沼氣甲烷二氧化碳硫化氫
外文關鍵詞:Pressure swing adsorptionBiogasMethaneCarbon dioxideHydrogen sulfide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生質沼氣平均成分為60~70%甲烷、30~40%二氧化碳、0~4000 ppm硫化氫及其他微量氣體等,然而甲烷與二氧化碳為溫室效應之主要氣體,其中,甲烷的全球暖化潛勢為二氧化碳之25倍,對於溫室效應的影響力不容小覷,而硫化氫易造成機器損壞及管線腐蝕。因此本研究目的為設計出可分離硫化氫、純化生質沼氣中甲烷至高純度供後續再生能源使用且同時回收二氧化碳將溫室氣體減量之生質沼氣分離程序,此程序可謂一舉數得。
本研究使用模擬程序以變壓吸附法(pressure swing adsorption, PSA)進行生質沼氣純化分離,依據文獻資料擇定以沸石13X做為吸附劑,比較三個廠牌生產之沸石13X於溫度298K下由等溫平衡吸附數據計算之平衡選擇性(equilibrium selectivity)後,選出最適合的吸附劑為COSMO沸石13X,隨後,本研究以模擬程序結合實驗設計(design of experiment, DOE),找出以進料條件為台灣6,000頭豬隻每日產生之排泄物經厭氧發酵後所產生的氣體量與進料組成64.8%甲烷、34.8%二氧化碳及4,000 ppm硫化氫時之雙塔八步驟PSA程序之分離最適化操作條件,經分析後,最佳化程序可使塔頂甲烷輕產物純度達99.34%、回收率91.93%,塔底重產物二氧化碳純度為可達96.37%、回收率49.16%,純化每噸甲烷產物所需能耗為1.02 GJ,捕獲每噸二氧化碳所需能耗為1.35 GJ,甲烷每日產能可達841.7 kg。
The average composition of biogas is 60~70% methane, 30~40% carbon dioxide, 0~4,000 ppm hydrogen sulfide, and other trace gases. However, methane and carbon dioxide are both greenhouse gases. Furthermore, the global warming potential of methane is 25 times more than that of carbon dioxide. Its influence on the greenhouse effect cannot be underestimated. Moreover, hydrogen sulfide is able to cause machine damage and pipeline corrosion easily. Therefore, the purpose of this study is to design a pressure swing adsorption separation process which can separate hydrogen sulfide, produce high-purity methane as the resources for renewable energy, and capture carbon dioxide to reduce greenhouse gas emission.
In this study, PSA simulation program was applied to separate biogas. The adsorbent is chosen based on literature, and the sorbent parameter calculated from experimental data of the adsorption equilibrium curve. The simulation process combined with the design of experiments is used to find out the optimal operating conditions for the separation of the three-component feed which contained CH4/CO2/H2S. To find the optimal operating conditions, the central composite design was conducted. Considering the biogas produced from the anaerobic fermentation of the excrement of 6,000 pigs per day, with the composition of 64.8% methane, 34.8% carbon dioxide, and 4,000 ppm hydrogen sulfide as the feed conditions. After analysis, the optimal operating conditions were obtained to produce a top product at 99.34% CH4 purity with 91.93 % recovery, and a bottom product at 96.37% CO2 purity with 49.16% recovery. The mechanical energy consumption was estimated to be 1.02 GJ/t-CH4 and 1.35 GJ/t-CO2. The methane production is 841.7 kg per day.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 ix
表目錄 xiii
第一章、 緒論 1
第二章、 簡介及文獻回顧 7
2-1 吸附之簡介 7
2-1-1 吸附基本原理 7
2-1-2 吸附劑及其選擇性 8
2-1-3 吸附程序 10
2-1-4 突破曲線 12
2-2 研究目的及文獻回顧 14
2-2-1 PSA程序之發展與改進 15
2-2-2 理論之回顧 19
2-2-3 用於生質沼氣分離之吸附劑之回顧 22
2-2-3-1 分離甲烷與二氧化碳之比較 22
2-2-3-2 分離硫化氫之比較 23
2-2-3-3 吸附劑相關文獻回顧之結論 27
2-2-4 分離生質沼氣之變壓吸附程序之回顧 28
2-2-4-1 平衡吸附分離程序 28
2-2-4-2 動力學吸附分離程序 30
2-2-4-3 平衡與動力學分離程混合使用與比較 31
2-2-4-4 生質沼氣分離程序文獻回顧之結論 32
第三章、 假設與理論 33
3-1 基本假設 34
3-2 統制方程式 34
3-3 吸附平衡關係式 39
3-3-1 等溫吸附平衡關係式 39
3-3-2 質傳驅動力模式(Driving force model) 40
3-3-3 吸附熱關係式 40
3-4 參數推導 41
3-4-1 軸向分散係數(Axial dispersion coefficient) 41
3-4-2 熱傳係數 43
3-4-3 線性驅動力質傳係數(Mass transfer coefficient of linear driving force) 45
3-5 邊界條件與流速 49
3-5-1 邊界條件與節點流速 49
3-5-2 閥公式 50
3-6 求解步驟 51
3-7 能耗及產率計算公式 54
第四章、 模擬程序所需參數與驗證 55
4-1 吸附平衡 56
4-1-1 氣體與吸附劑性質 56
4-1-2 實驗裝置 57
4-1-3 實驗裝置之操作流程 60
4-1-4 天平校正 61
4-1-5 空白實驗 62
4-1-6 吸附劑對於二氧化碳與甲烷選擇性之比較 63
4-1-7 COSMO沸石13X之等溫平衡吸附曲線 68
4-2 吸附動力學 72
4-2-1 實驗裝置、各部規格及特性 72
4-2-2 突破實驗操作步驟 75
4-2-3 脫附實驗操作步驟 75
4-2-4 實驗室規模吸附塔之突破曲線與脫附曲線模擬驗證 76
4-3 模擬程序與實驗結果之驗證 79
4-3-1 單塔三步驟PSA實驗與模擬驗證 79
4-3-2 雙塔六步驟PSA實驗與模擬驗證 83
4-3-3 比較氮氣/二氧化碳與甲烷/二氧化碳分離程序 87
第五章、 雙塔八步驟之三成分生質沼氣分離程序 88
5-1 進料流量、狀態以及組成 88
5-2 雙塔八步驟程序及參數 89
5-3 模擬程序結果與分析 92
第六章、 以實驗設計求各響應最佳化結果 94
6-1 因子選定 94
6-2 反應曲面法(Response surface methodology, RSM) 95
6-2-1 殘差分析圖(Analysis of residual plots) 98
6-2-2 迴歸分析 103
6-3 各響應組合之最佳化結果 105
6-3-1 各響應之邊界值 105
6-3-1-1 塔頂輕產物甲烷純度極大值 105
6-3-1-2 塔底重產物二氧化碳純度極大值 107
6-3-1-3 塔頂輕產物甲烷回收率極大值 109
6-3-1-4 塔底重產物二氧化碳回收率極大值 110
6-3-1-5 捕獲每噸二氧化碳所需能耗極小值 111
6-3-1-6 捕獲每噸甲烷所需能耗極小值 112
6-3-1-7 每單位能耗可捕獲甲烷及二化碳之極大值 113
6-3-1-8 甲烷產率極大值 114
6-3-1-9 各響應邊界極值整理 115
6-3-2 各響應組合最佳化結果及參數 116
6-3-2-1 甲烷及二氧化碳純度最大化 116
6-3-2-2 塔頂輕產物甲烷回收率最大化 118
6-3-2-3 甲烷產率最大化 120
6-3-2-4 每噸甲烷能耗最小化 121
6-3-2-5 甲烷產率最大化同時每噸甲烷能耗最小化 122
6-3-2-6 響應組合最佳化結果整理 123
6-4 以模擬程序驗證最佳化響應與結果 124
6-4-1 各響應組合最佳化之模擬程序驗證 124
6-4-2 甲烷產率最大化同時每噸甲烷能耗最小化程序 128
6-4-3 等高線圖(Contour plot) 132
第七章、 結論 133
符號說明 135
參考文獻 140
附錄A、 流速之估算方法 146
附錄B、 等溫吸附實驗數據 150
附錄C、 CCD結合ANOVA之參數與各響應值 153
附錄D、 CCD結合ANOVA之各響應回歸參數 162
附錄E、 其他補充資料 163
[1] A. Petersson and A. Wellinger, “Biogas Upgrading Technologies - Developments and Innovations,” IEA Bioenergy, Task 37 - Energy from biogas and landfill gas, 2009.
[2] I. V. Yentekakis and G. Goula, “Biogas Management: Advanced Utilization for Production of Renewable Energy and Added Value Chemicals,” Frontiers in Environmental Science, vol. 5, 2017.
[3] 楊立群,〈趨向成熟的技術,生物天然氣的純化與應用〉,工業局石化產業高值化推動專案,網址:https://www.pipo.org.tw/Hr/article_more?id=13,上網日期:2017年6月15日。
[4] 洪凡和郭家倫,〈參加第一屆中歐生物天然氣高峰論壇赴大陸報告〉,2016。
[5] 謝宗翰,〈以石安牧場為例,打造農畜牧業的循環經濟〉,城市發展,第22冊,頁76-87,2017。
[6] M. P. S. Santos, C. A. Grande and A. E. Rodrigues, “Pressure Swing Adsorption for Biogas Upgrading. Effect of Recycling Streams in Pressure Swing Adsorption Design,” Industrial & Engineering Chemistry, pp. 974-985, 2011.
[7] 財團法人中央畜產會,《2018台灣養豬統計手冊》,台北市:財團法人中央畜產會,2019。
[8] 蘇忠楨,〈畜牧業沼氣生物脫硫系統開發及世界沼氣工廠市場評估〉,安全農業,第16冊,頁60-72,2008。
[9] B. Bharathiraja, T. Sudharsanaa, J. Jayamuthunagaib, R. Praveenkumarc and S. Chozhavendhand, “Biogas Production – A review on Composition, Fuel Properties, Feed Stock and Principles of Anaerobic Digestion,” Renewable and Sustainable Energy Reviews 90, pp. 570-582, 2018.
[10] D. C. Montgomery, “Design and Analysis of Experiments,” 7 ed., New Jersey: John Wiley & Sons, 2009, pp. 417-485.
[11] R. T. Yang, “Gas Separation by Adsorption Process,” vol. 1, London: Imperial College Press, 1997.
[12] R. T. Yang, “Adsorbents: Fundamentals and Applications,” New Jersey: John Wiley & Sons, 2003
[13] A. Agarwal, “Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes,”Pittsburgh: Carnegie Mellon University Press, 2010.
[14] W. H. McAdams, “Heat Transmission,” 3rd ed., New York: McGraw Hill, 1954.
[15] C. W. Skarstrom, “Esso Research and Engineering Company,” United States Patent 2,944,627, 1960.
[16] A. E. Rodrigues, M. D. LeVan and D. Tondeur, “Adsorption: Science and Technology,” Alphen aan den Rijn: Kluwer, 1988.
[17] W. Choi, T. Kwon and Y. Yeo, “Optimal Operation of the Pressure Swing Adsorption (PSA) Process,” Korean Journal of Chemical Engineering, vol. 20, pp. 617-623, 2003.
[18] D. Domin and P. Guerin de Montgareuil, “Process for Separating a Binary Gaseous Mixture by Adsorption,” United States Patent 3,155,468, 1964.
[19] P. E. Jahromi, S. Fatemi, A.Vatani, J.A. Ritter and A. D. Ebner, “Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption,” Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[20] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, “Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon,” Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[21] R. T. Yang and S. J. Doong, “Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation,” AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[22] L. Jiang, V. G. Fox and L. T. Biegler, “Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems,” AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[23] A. Fuderer and E. Rudelstorfer, “Selective Adsorption Process,” United States Patent 3,986,849, 1976.
[24] P. H. Turnock and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption,” AIChE Journal, vol. 17, pp. 335-342, 1971.
[25] S. Farooq and D. M. Ruthven, “Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of Theone-Dimensional Model,” Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[26] E. Glueckauf and J. I. Coates, “Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation,” Journal of the Chemical Society, pp. 1315-1321, 1947.
[27] H. H. Heck, M. L. Hall, R. dos Santos and M. M. Tomadakis, “Pressure swing adsorption separation of H2S/CO2/CH4 gas mixtures with molecular sieves 4A, 5A and 13X,” Separation Science and Technology, vol. 53, pp. 1490-1497, 2017.
[28] F. Gholipour and M. Mofarahi, “Adsorption Equilibrium of Methane and Carbon Dioxide on Zeolite 13X: Experimental and Thermodynamic Modeling,” The Journal of Supercritical Fluids, vol. 111, pp. 47-54, 2016.
[29] M. Mofarahi and S. M. Salehi, “Pure and Binary Adsorption Isotherms of Ethylene and Ethane on Zeolite 5A,” Adsorption, vol. 19, pp. 101-110, 2013.
[30] J. A. C. Silva, K. Schumann and A. E. Rodrigues, “Sorption and Kinetics of CO2 and CH4 in binderless beads of 13X zeolite,” Microporous and Mesoporous Materials, vol. 158, pp. 219-228, 2012.
[31] Z. J. Pan , S. G. Chen, J. Tang and R. T. Yang, “Pore Structure Alteration of a Carbon Molecular Sieve for the Separation of Hydrogen Sulfide from Methane by Adsorption,” Adsorption Science & Technology, vol. 10, pp. 193-201, 1993.
[32] R. B. Rios, F. M. Stragliotto, H. R. Peixoto, A. E. B. Torres, M. Bastos-Neto, D. C. S. Azevedo and C. L. Cavalcante Jr., “Studies on the Adsorption Behavior of CO2-CH4 Mixtures Using Activated Carbon,” Brazilian Journal of Chemical Engineering, vol. 30, 2013.
[33] X. Peng and D. Cao, “Computational Screening of Porous Carbons, Zeolites and Metal Organic Frameworks for Desulfurization and Decarburization of Biogas, Natural Gas and Flue Gas,” AIChE Journal, vol. 59, pp. 2928-2942, 2013.
[34] L. Sigot, G. Ducom, B. Benadda and C. Labouré, “Comparison of Adsorbents for H2S and D4 Removal for Biogas Conversion in a Solid Oxide Fuel Cell,” Environmental Technology, vol. 37, pp. 86-95, 2016.
[35] A. J. Cruz, J. Pires, A. P. Carvalho and M. B. D. Carvalho, “Physical Adsorption of H2S Related to the Conservation of Works of Art: The Role of the Pore Structure at Low Relative Pressure,” Adsorption, vol. 11, pp. 569-576, 2005.
[36] L. Sigot, M. F. Obis, H. Benbelkacem, P. Germain and G. Ducom, “Comparing the Performance of a 13X Zeolite and an Impregnated Activated Carbon for H2S Removal from Biogas to Fuel an SOFC: Influence of Water,” International Journal of Hydrogen Energy, vol. 41, pp. 18533-18541, 2016.
[37] M. M. Tomadakis, H. H. Heck, M. E. Jubran and K. Al-Harthi, “Pressure-Swing Adsorption Separation of H2S from CO2 with Molecular Sieves 4A, 5A and 13X,” Separation Science and Technology, vol. 46, pp. 428-433, 2011.
[38] K. G. Wynnyk, B. Hojjati and R. A. Marriott, “High-Pressure Sour Gas and Water Adsorption on Zeolite 13X,” Industrial & Engineering Chemistry Research, vol. 57, pp. 15357-15365, 2018.
[39] A. Kapoor and R. T. Yang, “Kinetic Separation of Methane - Carbon Dioxide Mixture by Adsorption on Molecular Sieve Carbon,” Chemical Engineering Science, vol. 44, pp. 1723-1733, 1989.
[40] R. L. S. Canevesi, K. A. Andreassen, E. A. da Silva, C. E. Borba and C. A. Grande, “Pressure Swing Adsorption for Biogas Upgrading with Carbon Molecular Sieve,” Industrial & Engineering Chemistry Research, vol. 57, 2018.
[41] S. N. Vyas, S. R. Patwardhan, I. Gupta and V. Burra, “Bulk Separation and Purification of CH4/CO2 Mixtures on 4A/13X Molecular Sieves by Using Pressure Swing Adsorption,” Separation Science and Technology, vol. 26, pp. 1419-1431, 1991.
[42] S. A. Peter, “Kinetic Gas Separation Using Small Pore Metal Organic Frameworks: Dynamic Desorption and Pressure Swing Adsorption Studies of CO2 and CH4 in Amino-MIL - 53 (Al) for Biogas Upgradation,” 2013. https://www.belspo.be/belspo/organisation/Call/forms/Grants/Rapports%20finals/PF/PF_2011_Sunil.pdf
[43] C. A. Grande and A. E. Rodrigues, “Biogas to Fuel by Vacuum Pressure Swing Adsorption I. Behavior of Equilibrium and Kinetic-Based Adsorbents,” Industrial & Engineering Chemistry, vol. 46, pp. 4595–4605, 2007.
[44] S. Cavenati, C. A. Grande and A. E. Rodrigues, “Layered Pressure Swing Adsorption for Methane Recovery from CH4/CO2/N2 Streams,” Adsorption, vol. 11, pp. 549–554, 2005.
[45] C. T. Chou and C. Y. Chen, “Carbon Dioxide Recovery by Vacuum Swing Adsorption, ” Separation and Purification Technology, vol. 39, pp. 51-65, 2004.
[46] S. Sircar, R. Mohr, C. Ristic and M. B. Rao, “Isosteric Heat of Adsorption: Theory and Experiment,” The Journal of Physical Chemistry B, vol. 103, pp. 6539-6546, 1998.
[47] C. Y. Wen and L. T. Fan, “Models for Flow Systems and Chemical Reactors,” New York: Dekker, 1975.
[48] R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport Phenomena,” 2nd ed., New Jersey: John Wiley & Sons, 2007.
[49] E. N. Fuller, P. D. Schettler and J. C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients,” Journal of Chromatography, vol. 3, pp. 222-227, 1965.
[50] E. N. Fuller, K. Ensley and J. C. Giddings, “Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections,” The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[51] D. F. Fairbanks and C. R. Wilke, “Diffusion Coefficients in Multicomponent Gas Mixtures,” Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[52] W. L. McCabe, J. C. Smith and P. Harriott, “Unit Operations of Chemical Engineering,” 7th ed., New York: McGraw Hill, 2005.
[53] N. Wakao, S. Kaguei and T. Funazkri, “Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers,” Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[54] G. Carta and A. Cincotti, “Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles,” Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[55] J. Kärger and D. M. Ruthven, “Diffusion in Zeolites and Other Microporous Solids,” New York: John Wiley & Sons, 1992.
[56] M. D. LeVan, G. Carta and C. M. Yon, “Adsorption and Ion Exchange, in Perry's Chemical Engineers' Handbook,” 7th ed., New York: McGraw Hill, 1997.
[57] K. Kawazoe, M. Suzuki and K. Chihara, “Chromatographic Study of Diffusion in Molecular-sieving Carbon,” Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[58] H. Qinglin, S. M. Sundaram and S. Farooq, “Revisiting Transport of Gases in the Micropores of Carbon Molecular Sieves,” Langmuir, vol. 19, pp. 393-405, 2003.
[59] X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, “Diffusion Mechanism of CO2 in 13X Zeolite Beads,” Adsorption, vol. 20, pp. 121-135, 2014.
[60] Y. Park, Y. Ju, D. Park and C. H. Lee, “Adsorption Equilibria and Kinetics of Six Pure Gases on Pelletized Zeolite 13X up to 1.0 MPa: CO2, CO, N2 ,CH4 ,Ar and H2,” Chemical Engineering Journal, vol. 292, pp. 348–365, 2016.
[61] M. I. Hossain, C. E. Holland, A. D. Ebner and J. A. Ritter, “Mass Transfer Mechanisms and Rates of CO2 and N2 in 13X Zeolite from Volumetric Frequency Response,” Industrial & Engineering Chemistry Research, vol. 58, pp. 21679-21690, 2019.
[62] P. V. Danckwerts, “Continuous Flow Systems: Distribution of Residence,” Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[63] Fluid Controls Institute, Inc., “Recommended Voluntary Standard Formulas for Sizing Control Valves,” FCI 62-1, May 1962.
[64] R. C. Patel and C. J. Karamchandani, “Elements of Heat Engines,” 8th ed, Vadodara: Acharya, 1997.
[65] A. Golmakani, S. Fatemi and J. Tamnanloo, “CO2 Capture from the Tail Gas of Hydrogen Purification Unit by Vacuum Swing Adsorption Process, Using SAPO-34,” Industrial & Engineering Chemistry Research, vol. 55, pp. 334-350, 2016.
[66] 李念祖,《利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗》,碩士論文,國立中央大學化學工程與材料工程學系,2015。
[67] J. M. Smith and H. C. Ness, “Introduction to Chemical Engineering Thermodynamics,” 4th ed., New York: McGraw Hill, 1987.
[68] H. Golipour, B. Mokhtarani, M. Mafi, M. Khadivi and H. R. Godini, “Systematic Measurements of CH4 and CO2 Adsorption Isotherms on Cation-Exchanged Zeolites 13X,” Journal of Chemical & Engineering Data, vol. 64, pp. 4412–4423, 2019.
[69] 沈珍瑜,《雙塔式變壓吸附法捕獲合成氣中二氧化碳之實驗設計分析》,碩士論文,國立中央大學化學工程與材料工程學系,2018。
[70] 環保監測工,〈影響乾式厭氧發酵技術的六大因素剖析之紅外沼氣分析技術〉,農業,2017。
[71] 田賀文,《以反應曲面法建立旋鍛製程之菇狀預測模型》,碩士論文,國立中央大學化學機械工程學系,2013。
[72] G. E. P. Box and N. R. Draper, “Empirical Model Building and Response Surfaces,” New Jersey: John Wiley & Sons, 1987.
[73] R. H. Myers and D. C. Montgomery, “Response Surface Methodology” New York: John Wiley & Sons, 1995.
[74] 葉怡成,《實驗規劃-製程與產品最佳化》,台北市:五南圖書出版公司,ISBN:9571124087,2005。
[75] K. Kamatani, “Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution,” Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔