( 您好!臺灣時間:2021/05/14 21:27
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Cheng Cheng
論文名稱(外文):Effect of space control annealing on AlN layer and mechanism of surface oxide nitridation by N2-NH3 gas flow
指導教授(外文):Cheng-Yi Liu
外文關鍵詞:AlN layerspace control annealingnitridation
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
To growing the high quality AlGaN films for the UV-LEDs, it is necessary to possess a quality AlN buffer layer before the epitaxy of the subsequent high temperature layers. Therefore, high temperature annealing is a common way to improve its crystal quality. During the annealing, however, surface degradation of the AlN caused by thermal decomposition is a critical issue need to be dealt with. So, in this dissertation, the effects of space control annealing on the surface morphology, surface elemental composition, and crystal quality of the annealed AlN buffer layers were studied to mend the surface degeneration problem. The means for space control is by using two face to face wafers put in a graphite crucible before the annealing. The mechanism of these results was clarified by the calculation of saturated vapor pressure as well as the supersaturation, and the derivation of thermodynamics and equilibrium constant. The surface morphology, elemental composition, and crystal quality of the annealed AlN were analyzed by AFM, EDS, and XRD. The results showed that this approach could reduce the extent of surface decomposition as well as the surface oxidation arisen from the vapor of the alumina tube.
Although the problem of decomposition was solved, there was still a certain of oxygen content on the surface that was unable to be banished. Hence, we supposed a method that is nitridation of the AlN surface oxide layer by using N2-NH3 gas mixture. This NH3 gas can be served as a reactive gas which will substitute the surface oxygen atoms with nitrogen atoms. In addition to the work of NH3 gas, the N2 gas also played an important role during the nitridation because when the annealing temperature went up to 700℃, it can suppress the decomposition of NH3 gas. The mechanism of the nitridation process of the AlN surface oxide was proposed as follows with Kröger–Vink notation, which could attribute to the surface chemisorption of NH3, interdiffusion of N3− and O2− inward and outward the surface, and the desorption of H2, H2O, and O2. To figure out which step is the RDS, the XPS data fitting was employed to obtain the effective diffusion coefficient, which shows that "D" ̃_"O" is lower than "D" ̃_"N" for every experimental setup. The DFT and kMC method were also performed to realize the step by step process of nitridation and also the surface energy change of each configuration state of nitrided surface. The results of simulation showed that the out-diffusion of oxygen molecules is the RDS of nitridation process that triggered the following steps such as nitrogen diffusion and oxygen desorption.
中文摘要 II
Abstract III
Table of contents V
List of figures VI
List of tables X
Chapter 1: Introduction 1
1.1 Background of AlGaN‐based LEDs and their applications 1
1.2 Structure of DUV-LEDs and their challenges 4
1.3 Crystal structure of AlN/sapphire film and the effect of thermal annealing 9
1.4 The importance of AlN buffer layer and the growing technique 15
Chapter 2: Motivation 19
2.1 Thermal stability and oxygen impurity of AlN layer 19
Chapter 3: Experimental procedure 25
3.1 Annealing of AlN buffer layer in N2 flow and nitridation of AlN surface oxide in N2‐NH3 flow 25
3.2 Protective setups for the annealing 27
3.3 Simulation of nitridation process by CrystalMaker 28
3.4 Instrumental analysis 28
Chapter 4: Alleviation of surface degeneration during high temperature annealing 30
4.1 Mechanism of crack formation and the critical stress 30
4.2 Restrain of thermal decomposition by space control annealing and thermodynamics of AlN-Al2O3-N2 system 36
4.3 Effect of protective setups on the crystal quality of annealed AlN 47
Chapter 5: Nitridation Mechanism of AlN surface oxide layer 51
5.1 XPS analysis and nitridation mechanism of AlN surface oxide layer 51
5.2 Theoretical model and XPS data fitting 58
5.3 Diffusion process modeling and surface energy calculation 63
Chapter 6: Summary 69
References 71
[1] H. Hirayama, Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes, Journal of Applied Physics, 97 (2005) 7.
[2] M. Kneissl, J. Rass, III-Nitride ultraviolet emitters, Springer2016.
[3] R. Miyagawa, S. Yang, H. Miyake, K. Hiramatsu, T. Kuwahara, M. Mitsuhara, N. Kuwano, Microstructure of AlN grown on a nucleation layer on a sapphire substrate, Applied Physics Express, 5 (2012) 025501.
[4] C.-P. Huang, C.-H. Wang, C.-P. Liu, K.-Y. Lai, High-quality AlN grown with a single substrate temperature below 1200 C, Scientific reports, 7 (2017) 7135.
[5] C.-Y. Huang, P.-Y. Wu, K.-S. Chang, Y.-H. Lin, W.-C. Peng, Y.-Y. Chang, J.-P. Li, H.-W. Yen, Y.S. Wu, H. Miyake, High-quality and highly-transparent AlN template on annealed sputter-deposited AlN buffer layer for deep ultra-violet light-emitting diodes, AIP Advances, 7 (2017) 055110.
[6] J. Wang, F. Xu, C. He, L. Zhang, L. Lu, X. Wang, Z. Qin, B. Shen, High quality AlN epilayers grown on nitrided sapphire by metal organic chemical vapor deposition, Scientific Reports, 7 (2017) 42747.
[7] M. Funato, M. Shibaoka, Y. Kawakami, Heteroepitaxy mechanisms of AlN on nitridated c-and a-plane sapphire substrates, Journal of Applied Physics, 121 (2017) 085304.
[8] Y. Taniyasu, M. Kasu, T. Makimoto, Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0 0 0 1) substrate, Journal of crystal growth, 298 (2007) 310-315.
[9] Z. Chen, S. Newman, D. Brown, R. Chung, S. Keller, U. Mishra, S. Denbaars, S. Nakamura, High quality AlN grown on SiC by metal organic chemical vapor deposition, Applied Physics Letters, 93 (2008) 191906.
[10] X. Chen, C. Jia, Y. Chen, H. Wang, W. Zhang, Epitaxial growth and optical properties of Al-and N-polar AlN films by laser molecular beam epitaxy, Journal of Physics D: Applied Physics, 47 (2014) 125303.
[11] F. Brunner, H. Protzmann, M. Heuken, A. Knauer, M. Weyers, M. Kneissl, High‐temperature growth of AlN in a production scale 11× 2′ MOVPE reactor, physica status solidi c, 5 (2008) 1799-1801.
[12] O. Reentilä, F. Brunner, A. Knauer, A. Mogilatenko, W. Neumann, H. Protzmann, M. Heuken, M. Kneissl, M. Weyers, G. Tränkle, Effect of the AIN nucleation layer growth on AlN material quality, Journal of Crystal Growth, 310 (2008) 4932-4934.
[13] V. Kueller, A. Knauer, F. Brunner, A. Mogilatenko, M. Kneissl, M. Weyers, Investigation of inversion domain formation in AlN grown on sapphire by MOVPE, physica status solidi c, 9 (2012) 496-498.
[14] A.M. Soomro, C. Wu, N. Lin, T. Zheng, H. Wang, H. Chen, J. Li, S. Li, D. Cai, J. Kang, Modified pulse growth and misfit strain release of an AlN heteroepilayer with a Mg–Si codoping pair by MOCVD, Journal of Physics D: Applied Physics, 49 (2016) 115110.
[15] M. Imura, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio, Journal of crystal growth, 300 (2007) 136-140.
[16] N. Okada, N. Kato, S. Sato, T. Sumii, T. Nagai, N. Fujimoto, M. Imura, K. Balakrishnan, M. Iwaya, S. Kamiyama, Growth of high-quality and crack free AlN layers on sapphire substrate by multi-growth mode modification, Journal of crystal growth, 298 (2007) 349-353.
[17] Q. Paduano, D. Weyburne, Two-step process for the metalorganic chemical vapor deposition growth of high quality AlN films on sapphire, Japanese journal of applied physics, 42 (2003) 1590.
[18] A. Bardhan, Integration of AlGaN with (111) Si Substrate by MOCVD, 2019.
[19] D.A. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, C. Burrus, Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect, Physical Review Letters, 53 (1984) 2173.
[20] J. Simon, V. Protasenko, C. Lian, H. Xing, D. Jena, Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures, Science, 327 (2010) 60-64.
[21] S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. DenBaars, J.S. Speck, Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors, Nature materials, 5 (2006) 810-816.
[22] S.Y. Karpov, Y.N. Makarov, Dislocation effect on light emission efficiency in gallium nitride, Applied Physics Letters, 81 (2002) 4721-4723.
[23] M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, Advances in group III-nitride-based deep UV light-emitting diode technology, Semiconductor Science and Technology, 26 (2010) 014036.
[24] C. Reich, M. Feneberg, V. Kueller, A. Knauer, T. Wernicke, J. Schlegel, M. Frentrup, R. Goldhahn, M. Weyers, M. Kneissl, Excitonic recombination in epitaxial lateral overgrown AlN on sapphire, Applied Physics Letters, 103 (2013) 212108.
[25] V. Kueller, A. Knauer, F. Brunner, U. Zeimer, H. Rodriguez, M. Kneissl, M. Weyers, Growth of AlGaN and AlN on patterned AlN/sapphire templates, Journal of crystal growth, 315 (2011) 200-203.
[26] V. Kueller, A. Knauer, U. Zeimer, M. Kneissl, M. Weyers, Controlled coalescence of MOVPE grown AlN during lateral overgrowth, Journal of crystal growth, 368 (2013) 83-86.
[27] U. Zeimer, V. Kueller, A. Knauer, A. Mogilatenko, M. Weyers, M. Kneissl, High quality AlGaN grown on ELO AlN/sapphire templates, Journal of crystal growth, 377 (2013) 32-36.
[28] M. Martens, F. Mehnke, C. Kuhn, C. Reich, V. Kueller, A. Knauer, C. Netzel, C. Hartmann, J. Wollweber, J. Rass, Performance characteristics of UV-C AlGaN-based lasers grown on sapphire and bulk AlN substrates, IEEE Photonics Technology Letters, 26 (2013) 342-345.
[29] P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates, Applied Physics Letters, 102 (2013) 241113.
[30] M. Kim, T. Fujita, S. Fukahori, T. Inazu, C. Pernot, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, T. Takeuchi, AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates, Applied physics express, 4 (2011) 092102.
[31] J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, High-power UV-B LEDs with long lifetime, Gallium Nitride Materials and Devices X, International Society for Optics and Photonics, 2015, pp. 93631K.
[32] H. Hirayama, N. Noguchi, S. Fujikawa, J. Norimatsu, N. Kamata, T. Takano, K. Tsubaki, 222-282 nm AlGaN and InAlGaN based deep-UV LEDs fabricated on high-quality AlN template, Gallium Nitride Materials and Devices IV, International Society for Optics and Photonics, 2009, pp. 721621.
[33] H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Applied Physics Letters, 48 (1986) 353-355.
[34] I. Petrov, E. Mojab, R. Powell, J. Greene, L. Hultman, J.E. Sundgren, Synthesis of metastable epitaxial zinc‐blende‐structure AlN by solid‐state reaction, Applied physics letters, 60 (1992) 2491-2493.
[35] D. Holec, F. Rovere, P.H. Mayrhofer, P.B. Barna, Pressure-dependent stability of cubic and wurtzite phases within the TiN–AlN and CrN–AlN systems, Scripta Materialia, 62 (2010) 349-352.
[36] H. Morkoç, Handbook of nitride semiconductors and devices, Materials Properties, Physics and Growth, John Wiley & Sons2009.
[37] C. Sun, P. Kung, A. Saxler, H. Ohsato, K. Haritos, M. Razeghi, A crystallographic model of (00⋅ 1) aluminum nitride epitaxial thin film growth on (00⋅ 1) sapphire substrate, Journal of applied physics, 75 (1994) 3964-3967.
[38] F. Ponce, J. Major Jr, W. Plano, D. Welch, Crystalline structure of AlGaN epitaxy on sapphire using AlN buffer layers, Applied physics letters, 65 (1994) 2302-2304.
[39] X. Rong, X. Wang, G. Chen, J. Pan, P. Wang, H. Liu, F. Xu, P. Tan, B. Shen, Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy, Superlattices and Microstructures, 93 (2016) 27-31.
[40] L. Zhao, K. Yang, Y. Ai, L. Zhang, X. Niu, H. Lv, Y. Zhang, Crystal quality improvement of sputtered AlN film on sapphire substrate by high-temperature annealing, Journal of Materials Science: Materials in Electronics, 29 (2018) 13766-13773.
[41] M. Sopanen, Thermal Annealing of AlN Thin Films Fabricated by Plasma-Enhanced Atomic Layer Deposition for GaN Epitaxy, Aalto University, 2010.
[42] S. Raghavan, J.M. Redwing, Intrinsic stresses in AlN layers grown by metal organic chemical vapor deposition on (0001) sapphire and (111) Si substrates, Journal of applied physics, 96 (2004) 2995-3003.
[43] B.W. Sheldon, A. Rajamani, A. Bhandari, E. Chason, S. Hong, R. Beresford, Competition between tensile and compressive stress mechanisms during Volmer-Weber growth of aluminum nitride films, Journal of applied physics, 98 (2005) 043509.
[44] S. Raghavan, X. Weng, E. Dickey, J.M. Redwing, Effect of AlN interlayers on growth stress in GaN layers deposited on (111) Si, Applied Physics Letters, 87 (2005) 142101.
[45] J.E. Ayers, T. Kujofsa, P. Rago, J. Raphael, Heteroepitaxy of semiconductors: theory, growth, and characterization, CRC press2016.
[46] H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, N. Kamata, 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire, Applied Physics Letters, 91 (2007) 071901.
[47] Y. Hayashi, R.G. Banal, M. Funato, Y. Kawakami, Heteroepitaxy between wurtzite and corundum materials, Journal of Applied Physics, 113 (2013) 183523.
[48] R.G. Banal, M. Funato, Y. Kawakami, Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy, Applied Physics Letters, 92 (2008) 241905.
[49] Q. Paduano, D. Weyburne, J. Jasinski, Z. Liliental-Weber, Effect of initial process conditions on the structural properties of AlN films, Journal of crystal growth, 261 (2004) 259-265.
[50] T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L.T. Romano, S. Sakai, Direct evidence that dislocations are non-radiative recombination centers in GaN, Japanese journal of applied physics, 37 (1998) L398.
[51] T. Warren Weeks Jr, M.D. Bremser, K.S. Ailey, E. Carlson, W.G. Perry, R.F. Davis, GaN thin films deposited via organometallic vapor phase epitaxy on α (6H)–SiC (0001) using high‐temperature monocrystalline AlN buffer layers, Applied physics letters, 67 (1995) 401-403.
[52] Y.-M. Le Vaillant, S. Ciur, A. Andenet, O. Briot, B. Gil, R. Aulombard, R. Bisaro, J. Olivier, O. Durand, J.-Y. Duboz, Dependence of the Residual Strain in GaN on the AlN Buffer Layer Annealing Parameters, MRS Online Proceedings Library Archive, 468 (1997).
[53] Z. Fan, N. Newman, Experimental determination of the rates of decomposition and cation desorption from AlN surfaces, Materials Science and Engineering: B, 87 (2001) 244-248.
[54] Y. Kumagai, K. Akiyama, R. Togashi, H. Murakami, M. Takeuchi, T. Kinoshita, K. Takada, Y. Aoyagi, A. Koukitu, Polarity dependence of AlN {0 0 0 1} decomposition in flowing H2, Journal of crystal growth, 305 (2007) 366-371.
[55] R.A. Youngman, J.H. Harris, Luminescence studies of oxygen‐related defects in Aluminum nitride, Journal of the American Ceramic Society, 73 (1990) 3238-3246.
[56] G.A. Slack, L.J. Schowalter, D. Morelli, J.A. Freitas Jr, Some effects of oxygen impurities on AlN and GaN, Journal of Crystal Growth, 246 (2002) 287-298.
[57] C. Kittel, Introduction to Solid State Physics, 6th edn., translated by Y, Uno, N. Tsuya, A. Morita and J. Yamashita,(Maruzen, Tokyo, 1986) pp, (1986) 124-129.
[58] M. Bickermann, B. Epelbaum, A. Winnacker, Characterization of bulk AlN with low oxygen content, Journal of crystal growth, 269 (2004) 432-442.
[59] D. Storm, T. McConkie, D. Katzer, B. Downey, M. Hardy, D. Meyer, D.J. Smith, Effect of interfacial oxygen on the microstructure of MBE-grown homoepitaxial N-polar GaN, Journal of crystal growth, 409 (2015) 14-17.
[60] G.A. Slack, Nonmetallic crystals with high thermal conductivity, Journal of Physics and Chemistry of Solids, 34 (1973) 321-335.
[61] T. Yagi, N. Oka, T. Okabe, N. Taketoshi, T. Baba, Y. Shigesato, Effect of oxygen impurities on thermal diffusivity of AlN thin films deposited by reactive RF magnetron sputtering, Japanese Journal of Applied Physics, 50 (2011) 11RB01.
[62] J.-M. Wagner, F. Bechstedt, Properties of strained wurtzite GaN and AlN: Ab initio studies, Physical Review B, 66 (2002) 115202.
[63] E. Orowan, Fracture and strength of solids, Reports on progress in physics, 12 (1949) 185.
[64] D. Holec, P.H. Mayrhofer, Surface energies of AlN allotropes from first principles, Scripta materialia, 67 (2012) 760-762.
[65] D. Nilsson, E. Janzén, A. Kakanakova-Georgieva, Lattice parameters of AlN bulk, homoepitaxial and heteroepitaxial material, Journal of Physics D: Applied Physics, 49 (2016) 175108.
[66] S. Figge, H. Kröncke, D. Hommel, B.M. Epelbaum, Temperature dependence of the thermal expansion of AlN, Applied Physics Letters, 94 (2009) 101915.
[67] W. Yim, R. Paff, Thermal expansion of AlN, sapphire, and silicon, Journal of Applied Physics, 45 (1974) 1456-1457.
[68] T. Böttcher, S. Einfeldt, S. Figge, R. Chierchia, H. Heinke, D. Hommel, J. Speck, The role of high-temperature island coalescence in the development of stresses in GaN films, Applied Physics Letters, 78 (2001) 1976-1978.
[69] M. Moram, M. Vickers, X-ray diffraction of III-nitrides, Reports on progress in physics, 72 (2009) 036502.
[70] R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, D. Hommel, Microstructure of heteroepitaxial GaN revealed by x-ray diffraction, Journal of Applied physics, 93 (2003) 8918-8925.
[71] R. Togashi, Y. Kisanuki, K. Goto, H. Murakami, A. Kuramata, S. Yamakoshi, B. Monemar, A. Koukitu, Y. Kumagai, Thermal and chemical stabilities of group-III sesquioxides in a flow of either N2 or H2, Japanese Journal of Applied Physics, 55 (2016) 1202BE.
[72] K. Nomura, S. Hanagata, A. Kunisaki, R. Togashi, H. Murakami, Y. Kumagai, A. Koukitu, High-Temperature Heat-Treatment of c-, a-, r-, and m-Plane Sapphire Substrates in Mixed Gases of H2 and N2, Japanese Journal of Applied Physics, 52 (2013) 08JB10.
[73] O. Ambacher, M. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. Fischer, A. Miehr, A. Bergmaier, G. Dollinger, Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 14 (1996) 3532-3542.
[74] C. Hartmann, A. Dittmar, J. Wollweber, M. Bickermann, Bulk AlN growth by physical vapour transport, Semiconductor Science and Technology, 29 (2014) 084002.
[75] L. Jian-Qi, Q. Yong-Xin, W. Jian-Feng, X. Ke, Y. Hui, Analysis of modified Williamson-Hall plots on GaN layers, Chinese Physics Letters, 28 (2011) 016101.
[76] V. Srikant, J. Speck, D. Clarke, Mosaic structure in epitaxial thin films having large lattice mismatch, Journal of applied physics, 82 (1997) 4286-4295.
[77] Z. Chen, K. Xu, L. Guo, Z. Yang, Y. Su, X. Yang, Y. Pan, B. Shen, H. Zhang, G. Zhang, Effect of long anneals on the densities of threading dislocations in GaN films grown by metal-organic chemical vapor deposition, Journal of crystal growth, 294 (2006) 156-161.
[78] Q.-J. Xu, B. Liu, S.-Y. Zhang, T. Tao, Z.-L. Xie, X.-Q. Xiu, D.-J. Chen, P. Chen, P. Han, R. Zhang, Structural characterization of Al0. 55Ga0. 45N epitaxial layer determined by high resolution x-ray diffraction and transmission electron microscopy, Chinese Physics B, 26 (2017) 047801.
[79] L. Meng, W. Guohong, L. Hongjian, L. Zhicong, Y. Ran, W. Bing, L. Panpan, L. Jing, Y. Xiaoyan, W. Junxi, Low threading dislocation density in GaN films grown on patterned sapphire substrates, Journal of Semiconductors, 33 (2012) 113002.
[80] A.H. White, W. Melville, THE DECOMPOSITION OF AMMONIA AT HIGH TEMPERATURES, Journal of the American Chemical Society, 27 (1905) 373-386.
[81] V.S. Ban, Mass Spectrometric Studies of Vapor‐Phase Crystal Growth: II, Journal of the Electrochemical Society, 119 (1972) 761.
[82] L. Rosenberger, R. Baird, E. McCullen, G. Auner, G. Shreve, XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy, Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 40 (2008) 1254-1261.
[83] P. Motamedi, K. Cadien, XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition, Applied Surface Science, 315 (2014) 104-109.
[84] S.K. Sharma, X-ray spectroscopy, BoD–Books on Demand2012.
[85] T. Mattila, R.M. Nieminen, Ab initio study of oxygen point defects in GaAs, GaN, and AlN, Physical Review B, 54 (1996) 16676.
[86] R. Shekhar, K.F. Jensen, Temperature programmed desorption investigations of hydrogen and ammonia reactions on GaN, Surface science, 381 (1997) L581-L588.
[87] B.E. Deal, A. Grove, General relationship for the thermal oxidation of silicon, Journal of applied physics, 36 (1965) 3770-3778.
[88] T. Hashimoto, Y. Terakoshi, M. Yuri, M. Ishida, O. Imafuji, T. Sugino, K. Itoh, Quantitative study of nitridated sapphire surfaces by x-ray photoelectron spectroscopy, Journal of applied physics, 86 (1999) 3670-3675.
[89] F. Dwikusuma, T.F. Kuech, X-ray photoelectron spectroscopic study on sapphire nitridation for GaN growth by hydride vapor phase epitaxy: Nitridation mechanism, Journal of applied physics, 94 (2003) 5656-5664.
[90] C. Powell, Energy and material dependence of the inelastic mean free path of low‐energy electrons in solids, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 3 (1985) 1338-1342.
[91] J.H. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, Journal of Electron Spectroscopy and Related Phenomena, 8 (1976) 129-137.
[92] T. Matsuoka, Y. Kangawa, Epitaxial Growth of III-Nitride Compounds: Computational Approach, Springer2018.
[93] T. Akiyama, Y. Saito, K. Nakamura, T. Ito, Nitridation of Al 2 O 3 surfaces: chemical and structural change triggered by oxygen desorption, Physical review letters, 110 (2013) 026101.
[94] S. Clarke, D.D. Vvedensky, Origin of reflection high-energy electron-diffraction intensity oscillations during molecular-beam epitaxy: A computational modeling approach, Physical review letters, 58 (1987) 2235.
[95] Y. Kangawa, T. Ito, A. Taguchi, K. Shiraishi, T. Ohachi, A new theoretical approach to adsorption–desorption behavior of Ga on GaAs surfaces, Surface science, 493 (2001) 178-181.
[96] R. Lam, D. Vlachos, Multiscale model for epitaxial growth of films: Growth mode transition, Physical Review B, 64 (2001) 035401.
電子全文 電子全文(網際網路公開日期:20250630)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top