(3.235.191.87) 您好!臺灣時間:2021/05/13 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏子倫
研究生(外文):Tzu-Lun Wei
論文名稱:改善三塔真空變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計分析
指導教授:周正堂周正堂引用關係楊閎舜
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:132
中文關鍵詞:真空變壓吸附二氧化碳煙道氣
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,為了減少二氧化碳排放量以減緩全球暖化現象,碳捕獲與封存(Carbon Capture and Storage,簡稱CCS)的相關技術扮演了重要的角色。
在眾多碳捕獲方法中,變壓吸附程序因具有低能耗、低操作成本與簡單操作等優點而逐漸備受重視,其原理主要是藉由吸附劑對於混合氣體選擇性高低的不同,以及吸附劑在低壓時利於脫附、高壓時利於吸附之特性,來達到氣體分離的目的。
本實驗以EIKME 13X分子篩作為吸附劑搭配三塔九步驟真空變壓吸附程序捕獲燃煤發電廠排放後經預處理之煙道氣中二氧化碳,預處理後之煙道氣進料含有的二氧化碳濃度約為9.00% ~ 11.74%。為了獲得能讓二氧化碳純度達90%以上,回收率達80%以上的操作設定,本研究選擇三塔九步驟程序中的步驟1/4/7時間(壓力平衡/逆向減壓時間)、步驟2/5/8時間(高壓吸附/壓力平衡時間)和步驟3/6/9時間(高壓吸附/同向減壓時間)做為變因建立2水準3因子之全因子設計(full factorial design),總共需進行8組實驗,實驗結果可以用於探討各因子對二氧化碳純度、二氧化碳回收率及真空幫浦能耗的影響,接著利用複迴歸分析法(multiple regression analysis)分別建立二氧化碳純度、二氧化碳回收率、真空幫浦能耗的迴歸模型,最後將二氧化碳純度、二氧化碳回收率、真空幫浦能耗的迴歸模型共同進行最適化,預期達到二氧化碳純度90%以上、二氧化碳回收率80%以上的結果,並可推估此結果下的因子設定。
由因子顯著性的相關分析結果可得知,對二氧化碳純度具有顯著效應的因子為步驟3/6/9時間(高壓吸附/同向減壓時間),對二氧化碳回收率而言則為步驟1/4/7時間(壓力平衡/逆向減壓時間)和步驟3/6/9時間(高壓吸附/同向減壓時間);而真空幫浦能耗則沒有任何因子對其有顯著的影響效應。透過Minitab軟體針對二氧化碳純度、二氧化碳回收率與真空幫浦能耗的迴歸模型共同進行最適化的結果為二氧化碳純度最高值達92.08%,二氧化碳回收率最高值達84.32%,真空幫浦能耗最低值達2.22 GJ/tonne CO2,若對比8組實驗結果可發現第2組的實驗結果,二氧化碳純度92.01%、二氧化碳回收率84.18%、真空幫浦能耗2.20 GJ/tonne CO2,與最適化計算結果非常接近,由此可知模型具有一定程度的預測性與準確度;另外,最適化所推估出的變因設定即為本次實驗的最佳操作條件,而該設定與第2組實驗之操作條件完全相同,均為步驟1/4/7時間(壓力平衡/逆向減壓時間):400秒、步驟2/5/8時間(高壓吸附/壓力平衡時間):200秒、步驟3/6/9時間(高壓吸附/同向減壓時間):90秒。
In order to reduce the emission of carbon dioxide (CO2) to mitigate global warming, carbon capture and storage (CCS) technology plays an important role in recent years. Among of the methods for carbon dioxide capturing, pressure swing adsorption process (PSA) has obtained more attention, which is characterized by advantages such as low energy consumption, low investment, and simple operation. Based on the various selectivities of gas mixtures toward adsorbent, and according to the properties of adsorption at high pressure and desorption at low pressure, PSA uses these principles to achieve the target of gas separation.
This study utilized EIKME 13X zeolite as adsorbent with a 3-bed 9-step VPSA process to capture CO2 from pretreated flue gas exhausted by a coal-fired power plant. The CO2 concentration of pretreated flue gas is about 9.00% ~ 11.74%. To reach the goals of CO2 purity above 90% and CO2 recovery above 80%, this research chose pressure equilization / countercurrent depressurization time, adsorption / pressure equilization time and adsorption / cocurrent depressurization time of 3-bed-9-step VPSA process as the factors to set up two-level three-factor full factorial design. There were 8 experiments to be conducted. The results of experiments were used to investigate the effect of factors on CO2 purity, CO2 recovery and energy consumption of two vacuum pumps. Next, the multiple regression analysis method was utilized to build regression models of CO2 purity, CO2 recovery and energy consumption of two vacuum pumps, respectively. Finally, the regression models of CO2 purity, CO2 recovery and energy consumption of two vacuum pumps were optimized by Minitab software with CO2 purity and CO2 recovery expecting to reach above 90% and 80%, and the factors setting were estimated under this condition.
From the analyzed results, the factor adsorption / cocurrent depressurization time is the significant effect for CO2 purity; the factors pressure equilization / countercurrent depressurization time and adsorption / cocurrent depressurization time are the significant effects for CO2 recovery; there is no factor significant for energy consumption of vacuum pumps.
The results of optimizing CO2 purity, CO2 recovery and energy consumption of two vacuum pumps regression models show optimal CO2 purity 92.08%, CO2 recovery 84.32% and energy consumption of vacuum pumps 2.22 GJ/tonne CO2. Comparing with 8 experiments, the optimization results are nearly the same as the second experiment results : CO2 purity 92.01%, CO2 recovery 84.18% and energy consumption of vacuum pumps 2.20 GJ/tonne CO2. Namely, the regression models present very good predictability and accuracy. On the other hand, the factors found from optimization results are the best operating conditions of this research, and those factors are as same as the operating parameters of the second experiment. The best operating parameters are listed as the follows : pressure equilization / countercurrent depressurization time 400 seconds, adsorption / pressure equilization time 200 seconds, and adsorption / cocurrent depressurization time 90 seconds.
目錄
摘要 I
ABSTRACT III
誌謝 VI
目錄 VII
圖目錄 X
表目錄 XIII
第一章、緒論 1
第二章、吸附簡介與文獻回顧 6
2-1 吸附之簡介 6
2-1-1 吸附基本原理 6
2-1-2 PSA程序之發展與改進 9
2-1-3 吸附劑及其選擇參數 14
2-1-4 等溫平衡吸附曲線 17
2-2 文獻回顧 20
2-2-1 使用軟體模擬PSA程序對煙道氣進行二氧化碳分離 20
2-2-2 使用PSA程序對真實煙道氣進行二氧化碳分離 23
第三章、實驗裝置與方法 27
3-1 吸附劑簡介 29
3-2 實驗裝置 34
3-2-1 預處理裝置 34
3-2-2 真空變壓吸附裝置 37
3-3 實驗方法 40
3-3-1 真空變壓吸附實驗 43
3-3-2 全因子實驗設計 48
3-4 實驗步驟 50
第四章、實驗結果與討論 53
4-1 三塔九步驟真空變壓吸附實驗結果 53
4-2 三塔九步驟真空變壓吸附實驗之實驗設計分析 56
4-2-1 Effects plot 之分析 56
4-2-2 主效用圖(Main effect plot)與交互作用圖(Interaction plot)之分析 64
4-2-3 迴歸模型(Regression model)的建立與殘差分析(Residual analysis) 71
4-2-4 最適化結果 104
第五章、結論 107
參考文獻 110
[1] 張沛元:世界氣象組織:2019年史上第二熱。自由時報電子報。2020年1月6日,檢自
https://news.ltn.com.tw/news/world/breakingnews/3041834。

[2] 張泉湧,全球氣候變遷-危機與轉機,五南圖書出版股份有限公司,台北市,2011。

[3] Peter Wadhams(著),消失中的北極,王念慈、吳煒聲、黃馨如(譯),采實出版集團,台北市,2017。

[4] 陳律安:聯合國WMO:去年二氧化碳濃度創新高增速超越十年平均,聯合新聞網網頁。(2019年11月25日),檢自
https://udn.com/news/story/6812/4187171。

[5] J. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley and Y. Zhai, Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology, Chinese Journal of Chemical Engineering, vol. 24(4), pp. 460-467, 2016.

[6] 陳巾眉:【氣候變遷Q&A】(13) 什麼是碳捕捉與封存技術?碳捕集技術的主要形式,台灣環境資訊協會-環境資訊中心。2011年8月25日,檢自
https://e-info.org.tw/node/69594

[7] 李亨元:二氧化碳捕獲技術介紹(三)富氧燃燒,科技大觀園。2017年6月23日,檢自
https://scitechvista.nat.gov.tw/c/sffh.htm

[8] Y. Wang, L. Zhao, A. Otto, M. Robinius, D. Stolten, A review of post-combustion CO2 capture technologies from coal-fired power plants, Energy Procedia; vol. 114, pp.650-655, 2017

[9] 蔡蘊明:二氧化碳的回收和再利用,科學Online。2014年4月18日,檢自
https://highscope.ch.ntu.edu.tw/wordpress/?p=52817


[10] L. Riboldi and O. Bolland, Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants, International Journal of Greenhouse Gas Control, vol. 39, pp. 1-16, 2015.


[11] 賴君義(編)、王大銘、呂幸江、阮若屈、李亦宸、李岳憲、李魁然、安全福、洪維松、胡蒨傑、孫一明、崔玥、莊清榮、陳世雄、陳榮輝、高從堦、童國倫、黃書賢、游勝傑、楊台鴻、張雍、劉英麟、賴君義、賴振立、鍾台生、韓剛、羅林,薄膜科技概論,五南圖書出版股份有限公司,台北市,2019。

[12] 談駿嵩、王志盈,二氧化碳減量排放:二氧化碳捕獲,科技大觀園。2015年6月4日,檢自
https://scitechvista.nat.gov.tw/c/s2MH.htm

[13] J. Xu, Z. Wang, Z. Qiao, H. Wu, S. Dong, S. Zhao and J. Wang, Post-combustion CO2 capture with membrane process: practical membrane performance and appropriate pressure, Journal of Membrane Science, vol. 581, pp. 195–213, 2019.

[14] C. Y. Chuah, W. Li, S. Samarasinghe, G. Sethunga and T. H. Bae, Enhancing the CO2 separation performance of polymer membranes via the incorporation of amine-functionalized HKUST-1 nanocrystals, Microporous and Mesoporous Materials, vol. 290, pp. 109680, 2019.

[15] 蕭暐翰、王清海、談駿嵩,「以吸收與吸附捕獲CO2技術的發展現況」,工業材料雜誌,365期, 71-77頁,2017。

[16] T. S. Lee, J. H. Cho and S. H. Chi, Carbon dioxide removal using carbon monolith as electric swing adsorption to improve indoor air quality, Building and Environment, vol. 92, pp. 209-221, 2015.

[17] C. W. Skarstrom, Oxygen concentration process, US Patent 3237377A, 1996.

[18] P. G. D. Montgareuil and D. Domine, Process for separating a binary gaseous mixture by adsorption, US Patent 3155468A, 1964.

[19] R. T. Yang, Gas separation by pressure swing adsorption process, London: Imperial College Press, 1987.

[20] A. D. Wiheeb, Z. Helwani, J. Kim and M. R. Othman, Pressure swing adsorption technologies for carbon dioxide capture, Separation and Purification Reviews, vol. 45(2), pp. 108-121, 2016.

[21] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.

[22] J. J. Collins, Air separation by adsorption process, US Patent 386849A, 1993.

[23] S. Sircar, Separation of multicomponent gas mixtures, US Patent 4171206A, 1979.

[24] S. Sircar and T. C. Golden, Purifacation of hydrogen by pressure swing adsorption, Separation Science and Technology, vol. 35(5), pp. 667-687, 2000.

[25] L. Wang, Y. Yang, W. Shen, X. Kong, P. Ling, J. Yu and A. E. Rodrigues, CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units, Industrial & Engineering Chemistry Research, vol. 52, pp. 7947-7955, 2013.

[26] R. T. Yang, Gas separation by adsorption process, London:Imperial College Press, 1987.

[27] A. K. Rajagopalan, A. M. Avila and A. Rajendran, Do adsorbent screening metrics predict process performance? A process optimisation based study for post-combustion capture of CO2, International journal of greenhouse gas control, vol. 46, pp.76-85, 2016.

[28] K. T. Chue, J. K. Kim, Y. J. Yoo, S. H. Cho and R. T. Yang, Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption, Industrial & Engineering Chemistry Research, vol. 34(2), pp. 437-449, 1995.

[29] Y. Takamura, S. Narita, J. Aoki, S. Hironaka and S. Uchida, Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas, Separation and Purification Technology, vol. 24(3), pp. 519-528, 2001.

[30] J. A. Delgado, M. A. Uguina, J. L. Sotelo, V. I. Agueda, A. Sanz and P. Gomez, Numerical analysis of CO2 concentration and recovery from flue gas by a novel vacuum swing adsorption cycle, Computers & Chemical Engineering, vol. 35, pp. 1010-1019, 2011.

[31] R. Haghpanah, R. Nilam, A.Rajendran, S. Farooq and I. A. Karimi, Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture, AIChE Journal, vol. 59(12), pp. 4735-4748, 2013.

[32] G. N. Nikolaidis, E. S. Kikkinides and M. C. Georgiadis, An integrated two-stage P/VSA process for postcombustion CO2 capture using combinations of adsorbents zeolite 13X and Mg-MOF-74, Industrial & Engineering Chemistry Research, vol. 56, pp. 974-988, 2017.

[33] M. Ishibashi, H. Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata, Y. Kageyama, Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method, Energy Convers. Manage, vol. 37, pp. 929-933, 1996.

[34] B. K. Na, H. Lee, K. K. Koo and H. K. Song, Effect of rinse nad rccycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & Engineering Chemistry Research, vol. 41(22), pp. 5498-5503, 2002.

[35] S. H. Cho, J. H. Park, H. T. Beum, S. S. Han and J. N. Kim, A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption, Studies in Surface Science and Catalysis, vol. 153, pp. 405-410, 2014

[36] G. Li, P. Webley, J. Zhang, R. Singh and M.Marshall, Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X, Adsorption, vol. 14, pp. 415-422, 2008.

[37] C. Shen, Z. Liu, P. Li and J. Yu, Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads, Industrial & Engineering Chemistry Research, vol.51, pp. 5011-5021, 2012.

[38] L. Wang, Z. Liu, P. Li, J. Wang and J. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption, vol. 18(5-6), pp. 445-459, 2012.

[39] S. Krishnamurthy, V. R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I. A. Karimi and S. Farooq, CO2 capture from dry flue gas by vacuum swing adsorption: A pilot plant study, AIChE Journal, vol. 60(5), pp. 1830-1842, 2014.

[40] D. Wawrzyńczak, I. Majchrzak-Kuceba, K. Srokosz, M. Kozak, W. Nowak, J. Zdeb, W. Smolka and A. Zajchowski, The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas, Separation and Purification Technology, vol. 209, pp. 560-570, 2019.

[41] 郭家禎,利用三塔式真空變壓吸附法捕獲燃煤電廠煙道氣中二氧化碳之實驗研究,國立中央大學,碩士論文,民國109年。

[42] 林欣慧:分子篩,科學Online。2015年6月4日。檢自
https://highscope.ch.ntu.edu.tw/wordpress/?p=62920

[43] 張鈞翔,利用真空變壓吸附法捕獲發電廠煙道氣中二氧化碳之三塔實驗設計分析模擬研究,國立中央大學,碩士論文,民國109年。

[44] Methods and formulas for the effects plots in analyze factorial design, Minitab 18 support. 檢自
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/doe/how-to/factorial/analyze-factorial-design/methods-and-formulas/effects-plots/

[45] 余民寧,複線性迴歸(Multiple Linear Regression) ,國家教育研究院 雙語詞彙、學術名詞暨辭書資訊網。2000年12月,檢自
http://terms.naer.edu.tw/detail/1314019/

[46] 沈珍瑜,雙塔式變壓吸附法捕獲合成氣中二氧化碳之實驗設計分析,國立中央大學,碩士論文,民國107年。

[47] 黎正中、唐麗英,實驗設計與分析,高立圖書,新北市,2015。

[48] 鄭筑勻,以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析,國立中央大學,碩士論文,民國108年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔