跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 14:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳以青
研究生(外文):Yi-Ching Chen
論文名稱(外文):Density Functional Theory Investigation of Thermal Degradation Pathways of CH3NH3PbI3 Perovskite
指導教授:蔡惠旭
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:39
中文關鍵詞:鈣鈦礦太陽能電池熱穩定性熱分解
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
近年來鈣鈦礦材料由於其高能量轉換效率引起許多研究學者關注,而methylammonium lead iodide (CH3NH3PbI3, MAPbI3) 被認為是極具潛力的鈣鈦礦材料,然而化學穩定性是該材料應用於太陽能電池上必須面臨的一大挑戰。有許多文獻研究了熱分解反應的機制且提供了兩種可能的熱分解反應路徑,兩種路徑之間的差異就在於碘離子反應的對象,碘離子和CH3NH3+中N上的H反應生成HI及CH3NH2,而跟C反應則會得到CH3I以及NH3。本研究利用密度泛函理論 (Density Functional Theory, DFT) 計算MAPbI3不同熱分解反應過程中構型及位能的變化,並且建立了兩套計算模型模擬實際熱分解過程,分別為氣體模型以及晶格模型。在氣體模型中我們發現反應較容易生成HI及CH3NH2,因為反應的初始結構透過Boltzmann distribution的計算發現在氣態狀態下碘離子是無法直接與C反應,所以我們推斷在氣體模型中主要的熱分解產物是HI及CH3NH2;接著透過晶格的模型計算我們發現晶格的環境可以同時提供兩種反應位向,而且兩種反應的活化能是相似的,意味著在晶格模型中MAPbI3兩種熱分解反應都會發生。我們的研究提供了純粹的晶格環境來去探討分解的機制。本研究目的是了解MAPbI3熱分解機制並希望能夠提供相關研究學者一些參考去設計具有良好熱穩定性的鈣鈦礦太陽能電池。
The poor stability of organometallic halide perovskite, especially the CH3NH3PbI3 (MAPbI3), in high temperature environment is one of the challenge problems retarding for its wide applications. The thermal degradation mechanism of MAPbI3 perovskite remains unclear. In this study, we employ firstprinciple density functional theory to investigate the thermal degradation mechanisms of MAPbI3 perovskite. We focus on studying the two reaction pathways of iodine with the CH3NH3+: one reaction is the proton abstraction reaction from methylammonium to iodine and the products are hydrogen iodide (HI) and methylamine (CH3NH2). The other reaction is a substituent reaction (SN2) using the iodine as the nucleophile to attack the carbon atom of CH3NH3+ to yield the products of iodomethane (CH3I) and ammonia (NH3). Our calculations based on crystal structure of MAPbI3 perovskite provides an kinetics data under an “environment-free” conditions allowing us to assess the “intrinsic” (in)stability of MAPbI3 perovskite under heat stress. Our calculations show the SN2 reaction is a two-step one, where the CH3-I-Pb-X intermediate formed in crystal after the release of NH3 gas. In addition, both pathways have comparable activation energy indicating that extrinsic factors could lead to different degradation pathways.
摘要 i
Abstract ii
Contents iii
List of figures iv
Chapter 1 - Introduction 1
Chapter 2 - Computational Methods 6
Chapter 3 - Results and Discussion 10
3.1 P1 Reaction Pathway of I-MA and PbI3-MA 10
3.2 P2 Reaction Pathway of I-MA and PbI3-MA 14
3.3 P1 Reaction Pathway of MAPbI3-Crystal 20
3.4 P2 Reaction Pathway of MAPbI3-Crystal 22
Chapter 4 - Conclusion 26
References 27
Supporting information 30
1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131 (17), 6050-+.
2. Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. Y., Solar cell efficiency tables (version 52). Prog. Photovoltaics 2018, 26 (7), 427-436.
3. Boix, P. P.; Nonomura, K.; Mathews, N.; Mhaisalkar, S. G., Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today 2014, 17 (1), 16-23.
4. Heo, J. H.; Song, D. H.; Patil, B. R.; Im, S. H., Recent Progress of Innovative Perovskite Hybrid Solar Cells. Israel Journal of Chemistry 2015, 55 (9), 966-977.
5. Ciccioli, A.; Latini, A., Thermodynamics and the intrinsic stability of lead halide perovskites CH3NH3PbX3. The journal of physical chemistry letters 2018, 9 (13), 3756-3765.
6. Brunetti, B.; Cavallo, C.; Ciccioli, A.; Gigli, G.; Latini, A., On the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites. Scientific reports 2016, 6, 31896.
7. Niu, G. D.; Guo, X. D.; Wang, L. D., Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3 (17), 8970-8980.
8. Wang, Z.; Shi, Z. J.; Li, T. T.; Chen, Y. H.; Huang, W., Stability of Perovskite Solar Cells: A Prospective on the Substitution of the ACation and XAnion. Angewandte Chemie-International Edition 2017, 56 (5), 1190-1212.
9. Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y. B., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. Journal of Materials Chemistry A 2015, 3 (15), 8139-8147.
10. Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; De Angelis, F.; Boyen, H. G., Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials 2015, 5 (15).
11. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G., Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chemistry 2013, 52 (15), 9019-9038.
12. Dualeh, A.; Gao, P.; Seok, S. I.; Nazeeruddin, M. K.; Graetzel, M., Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chem. Mat. 2014, 26 (21), 6160-6164.
13. Yang, J. L.; Siempelkamp, B. D.; Liu, D. Y.; Kelly, T. L., Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques. Acs Nano 2015, 9 (2), 1955-1963.
14. Philippe, B.; Park, B. W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E. M. J.; Rensmo, H., Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures-A Photoelectron Spectroscopy Investigation. Chem. Mat. 2015, 27 (5), 1720-1731.
15. Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M.; Kamat, P. V., Making and Breaking of Lead Halide Perovskites. Accounts of Chemical Research 2016, 49 (2), 330-338.
16. Pisoni, A.; Jacimovic, J.; Barisic, O. S.; Spina, M.; Gaal, R.; Forro, L.; Horvath, E., Ultra-Low Thermal Conductivity in Organic-Inorganic Hybrid Perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 2014, 5 (14), 2488-2492.
17. Shirayama, M.; Kato, M.; Miyadera, T.; Sugita, T.; Fujiseki, T.; Hara, S.; Kadowaki, H.; Murata, D.; Chikamatsu, M.; Fujiwara, H., Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air. Journal of Applied Physics 2016, 119 (11).
18. Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. B., Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ. Sci. 2016, 9 (11), 3406-3410.
19. Nenon, D. P.; Christians, J. A.; Wheeler, L. M.; Blackburn, J. L.; Sanehira, E. M.; Dou, B. J.; Olsen, M. L.; Zhu, K.; Berrya, J. J.; Luther, J. M., Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energy Environ. Sci. 2016, 9 (6), 2072-2082.
20. Latini, A.; Gigli, G.; Ciccioli, A., A study on the nature of the thermal decomposition of methylammonium lead iodide perovskite, CH 3 NH 3 PbI 3: an attempt to rationalise contradictory experimental results. Sustainable Energy & Fuels 2017, 1 (6), 1351-1357.
21. Xu, W.; Liu, L.; Yang, L.; Shen, P.; Sun, B.; McLeod, J. A., Dissociation of Methylammonium Cations in Hybrid Organic-Inorganic Perovskite Solar Cells. Nano Lett. 2016, 16, 4720.
22. Jung, M. C.; Lee, Y. M.; Lee, H. K.; Park, J.; Raga, S. R.; Ono, L. K.; Wang, S.; Leyden, M. R.; Yu, B. D.; Hong, S., The Presence of CH3NH2 Neutral Species in Organometal Halide Perovskite Films. Appl. Phys. Lett. 2016, 108, 073901.
23. Nenon, D. P.; Christians, J. A.; Wheeler, L. M.; Blackburn, J. L.; Sanehira, E. M.; Dou, B.; Olsen, M. L.; Zhu, K.; Berry, J. J.; Luther, J. M., Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energy Environ. Sci. 2016, 9 (6), 2072-2082.
24. McLeod, J. A.; Liu, L., Prospects for Mitigating Intrinsic Organic Decomposition in Methylammonium Lead Triiodide Perovskite. The Journal of Physical Chemistry Letters 2018, 9 (9), 2411-2417.
25. Haruyama, J.; Sodeyama, K.; Han, L. Y.; Tateyama, Y., Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5 (16), 2903-2909.
26. Wang, Y.; Sumpter, B. G.; Huang, J. S.; Zhang, H. M.; Liu, P. R.; Yang, H. G.; Zhao, H. J., Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3. Journal of Physical Chemistry C 2015, 119 (2), 1136-1145.
27. Ren, Y. X.; Oswald, I. W. H.; Wang, X. P.; McCandless, G. T.; Chan, J. Y., Orientation of Organic Cations in Hybrid Inorganic-Organic Perovskite CH3NH3PbI3 from Subatomic Resolution Single Crystal Neutron Diffraction Structural Studies. Crystal Growth & Design 2016, 16 (5), 2945-2951.
28. Motta, C.; El-Mellouhi, F.; Kais, S.; Tabet, N.; Alharbi, F.; Sanvito, S., Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat. Commun. 2015, 6, 7.
29. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Physical Review B 1976, 13 (12), 5188-5192.
30. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868.
31. Delley, B., An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules. Journal of Chemical Physics 1990, 92 (1), 508-517.
32. Delley, B., From molecules to solids with the DMol(3) approach. Journal of Chemical Physics 2000, 113 (18), 7756-7764.
33. Tkatchenko, A.; Scheffler, M., Accurate Molecular van der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102 (7), 4.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. Improvement of Magnesium Cation-Chloride and Acetate Anion Interaction Lennard-Jones Parameters by Experimental Osmotic Pressure: Difficulty Arises from Slow Water Exchange Rate
2. Improvement of Calcium Cation-Chloride/Acetate Anion Interactions by Osmotic Pressure Simulations of Concentrated Salt Solutions: Validation by Coordination Numbers
3. A Computational Study of Functional Materials: Ligand Exchange Mechanisms in MOF Synthesis and Charge Transfer in D-A-π-A Organic Sensitizers in DSSCs
4. Catalytic Mechanisms of the Ketol–Acid Reductoisomerase of Sso-ilvC2 Protein: An Umbrella Sampling QM/MM MD study
5. Design of Panchromatic Metalloporphyrin Sensitizers owning Multiple Types of Transitions including D--A and Singlet and Spin-Orbit Coupling Activated Triplet Metal-to-Anchor Charge Transfers for Dye-sensitized Solar Cells
6. A First-Principle Study of the Thermal Degradation Mechanisms of CH3NH3PbI3 Perovskite
7. Activating Spin-Forbidden Transitions in Terpyridyl Ru/Os-Complexes Through Spin-Orbit Interactions Strengthened by Ancillary Ligands Enhance the Near-IR Absorptions of Dye-Sensitized Solar Cells
8. Studies of Tunneling Event on the Single-Electron Box
9. 活性污泥中烷烴降解菌及其烷烴單加氧酶(AlkB)的鑑定
10. 無人機光達系統應用於沙岸與藻礁地區之波浪能量消散之研究
11. 海岸帶地區海表拖曳係數與海表粗糙度(均方傾度)之相依關係
12. Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality
13. non
14. Computational Study of the Catalytic Mechanism of Ketol–Acid Reductoisomerase of Sso-ilvC2 Protein
15. Sliding of Sso7c4 Protein on DNA Backbone Investigated by Molecular Dynamic Simulations