(3.238.235.155) 您好!臺灣時間:2021/05/16 16:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李冠均
研究生(外文):Kuan-Chun Lee
論文名稱:自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物
指導教授:王家麟王家麟引用關係
指導教授(外文):Jia-Lin Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:140
中文關鍵詞:熱脫附系統有害空氣汙染線上質譜連續監測
外文關鍵詞:Thermal DesorptionHazardous Air PollutantsIn-Situ Online GC/MS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
依據美國空氣清淨法及增修條文 (Clean Air Act Amendments, CAAA),有害空氣汙染物 (Hazardous Air Pollutants, HAPs) 定義為「任何空氣汙染物導致死亡率增加,危害人體健康而不可回復,或造成能力喪失但能恢復之症狀,稱為有害空氣汙染物」。
因應台灣高濕度環境與工業區林立之特性,本研究自製一全自動化除水 (Water Management, WM) 及熱脫附 (Thermal Desorption, TD) 裝置以串連GC/MS在工業區周界進行線上監測空氣中HAPs濃度。WM-TD-GC/MS小時數據以自動化處理方式鎖定HAPs物質進行定量估算,並將數據直接上傳至雲端系統,利於工業區內部對於排放狀態之即時掌握。本研究所開發之WM-TD-GC/MS方法係參考環保署NIEA A715.15B標準方法品保規範建立檢量線、每日查核規範,評估準確度 (回收率)、精密度、方法偵測極限等。
為了掌握HAPs排放及同步偵測光化學評估測站 (Photochemical Assessment Monitoring Stations, PAMS) 鎖定之光化前驅物,本WM-TD-GC/MS方法囊括NIEA A715.15B及NIEA A505.12B目標化合物 (扣除乙烷、乙烯及乙炔),在使用單一分離管柱下將100種目標化合物進行定性定量,可在同一分析系統上偵測PAMS與HAPs兩大類有機揮發性化合物 (Volatile Organic Compounds, VOCs)。
在質譜全離子掃描 (Total Ion Chromatogram, TIC) 下,檢量線結果顯示RSD%介於1.37% ~ 15.95%之間,R值為0.993 ~ 0.999,方法偵測極限 (Method Detection Limit, MDL) 為0.06 ~ 0.69 ppb。本研究於台塑麥寮工業區內進行架站測試,並同時比對鄰近光化測站及離線式採樣罐分析之結果,以確保此Online WM-TD-GC/MS數據之可信度。
本研究成功開發新型WM-TD-GC/MS系統應用於工業區HAPs連續監測,提供工業區管理單位對於汙染物排放源進行內控,利於自我改善,並可對未知物進行偵測與鑑定,便於未來納入新增之目標化合物。透過線上質譜分析技術的開發及應用,能獲得HAPs物質長時間之濃度分布,以利未來客觀評估HAPs對居民造成之健康風險。
According to the Clean Air Act Amendments (CAAA) of the United States, Hazardous Air Pollutants (HAPs) are defined as "Any air pollutants results in increased mortality, endanger human health that cannot be recovered, or cause symptoms that will harm abilities but can recover are called HAPs."
In response to the high humidity condition and scattered industrial zones, this study aims to develop an automated Water Management (WM) and Thermal Desorption (TD) System to couple with Gas Chromatography Mass Spectrometry (GC/MS) for on-line monitoring ambient HAPs. The WM-TD-GC/MS can provide hourly concentrations of the 100 target species in a continuous manner. Moreover, the data can be uploaded to the cloud system to provide instantaneous concentration information for the purpose of internal control and emission management. This study also established the protocol of quality assurance and control in accordance with the NIEA A715.15B method, which includes the establishment of concentration calibration, daily checks, accuracy (recovery), precision and method detection limits.
In order to have a grasp on emissions of HAPs and detect compounds targeted by the Photochemical Assessment Monitoring Stations (PAMS). Using a single capillary column the WM-TD-GC/MS method was able to incorporate 100 target compounds including most of the target compounds listed in NIEA A715.15B and NIEA A505.12B With the exception of ethane, ethylene and acetylene.
The system was conducted in the mode of Total Ion Chromatogram (TIC). The QA results show that the precision as represented by RSD% values are between 1.37% and 15.95%, the linearity as denoted by R values are between 0.993 and 0.999, and MDL are between 0.06 and 0.69 ppb. In this study, the field measurements were carried out in Formosa Petrochemical Corporation in Mailiao. To validate the performance of the online WM-TD-GC/MS, it was compared with both the PAMS measurements nearby and the offline canister sampling method.
This research successfully developed a novel WM-TD-GC/MS system for on-line monitoring air pollutants in industrial zones, providing concentration information for internal control of emissions for the management personnel of the industries. In addition, the instrument can identify unknown compounds to be added onto the list of target compounds in the future. Through the development and applications of the online system, risk assessment can be more accurately conducted with the availability of the instantaneous data of HAPs.
摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 ix
表目錄 xiii
第一章 前言 1
1-1 研究動機及目的 1
1-2 研究背景 3
1-3 揮發性有機化合物監測方法 11
1-4 特殊性工業區監測方法比較 15
第二章 除水與熱脫附設備開發 21
2-1 除水系統開發及測試 23
2-2 熱脫附系統改良及優化 28
2-2-1 熱脫附系統運作原理 28
2-2-2 熱脫附系統改良與設計 32
2-3 降溫核心開發與設計 35
2-4 儀器流路設計 40
2-5 自動控制軟體設計 51
2-5-1 儀器控制元件 51
2-5-2 人機界面設計及介紹 53
2-5-3 系統保護機制 58
2-5-4 保壓測試機制 60
2-6 自動分析報告建立 62
第三章 分析條件與方法建置 65
3-1 目標分析物定性測試 65
3-2 分析條件建立 73
3-3 檢量線建立 77
3-4 準確度及精密度分析結果 80
3-5 方法偵測極限 82
3-6 儀器運轉穩定性 86
第四章 實場結果與討論 91
4-1 儀器架設位置 93
4-2 實場平行比對結果 96
4-3 離線採樣分析比對結果 102
4-4 周界未知物定性結果 107
第五章 總結與未來展望 109
參考文獻 111
[1] 空氣汙染防制法,行政院環境保護署,1975。
[2] 特殊性工業區緩衝地帶及空氣品質監測設施設置標準,行政院環境保護署,2014。
[3] U.S. Congress., Clean Air Act, U.S. Government Printing Office, Washington, DC, 1963.
[4] U.S. Congress., Clean Air Act Amendments of 1970, U.S. Government Printing Office, Washington, DC, 1970.
[5] 固定汙染源空氣汙染物排放標準,行政院環境保護署,2017。
[6] 揮發性有機物空氣汙染管制及排放標準,行政院環境保護署,2013。
[7] 特殊性工業區緩衝地帶及空氣品質監測設施設置標準,附表一:開發特殊性工業區應監測之有機光化前驅物,行政院環境保護署,2014。
[8] 特殊性工業區緩衝地帶及空氣品質監測設施設置標準,附表二:開發特殊性工業區應監測之有害空氣汙染物,行政院環境保護署,2014。
[9] 行政院環境保護署,空氣品質監測網-光化測站介紹。
https://airtw.epa.gov.tw/CHT/TaskMonitoring/Photochemical/PhotochemicalIntro.aspx. [6 Jul. 2020]
[10] U.S. EPA, The Original List of Hazardous Air Pollutants as Follows.
https://www.epa.gov/airtoxics/orig189.html. [24 Feb. 2016]
[11] U.S. Congress., Clean Air Act Amendments of 1990, U.S. Government Printing Office, Washington, DC, 1990.
[12] B. Lee (1991) Highlights of the Clean Air Act Amendments Off 1990. Journal of the Air & Waste Management Association 41, 16-19.
[13] C.C. Chang, J.L. Wang, S.C. Lung, S.C. Liu, C.J. Shiu (2009) Source Characterization of Ozone Precursors by Complementary Approaches of Vehicular Indicator and Principal Component Analysis. Atmospheric Environment 43, 1771-1778.
[14] C.C. Chang, J.L. Wang, S.C. Lung, C.Y. Chang, P.J. Lee, C. Chew, W.C. Liao, W.N. Chen, C.F. Ou-Yang (2014) Seasonal Characteristics of Biogenic and Anthropogenic Isoprene in Tropical-Subtropical Urban Environments. Atmospheric Environment 99, 298-308.
[15] U.S. EPA, Toxic Organics - 14 (TO-14): Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Specially Prepared Canisters with Subsequent Analysis by Gas Chromatography, 1999.
[16] U.S. EPA, Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), 1999.
[17] U.S. EPA, Toxic Organics - 17 (TO-17): Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling onto Sorbent Tubes, 1999.
[18] 行政院保護署環境檢驗所,空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法 (NIEA A715.15B),2014。
[19] 行政院保護署環境檢驗所,周界空氣中N-甲基吡咯酮、乙二醇及異丁醇等揮發性有機物檢測方法-吸附管採樣/氣相層析質譜儀法 (NIEA A746.10B),2015。
[20] 行政院環境保護署環境檢驗所,空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法 (NIEA A505.12B),2013。
[21] 行政院環境保護署環境檢驗所,空氣中揮發性化合物篩檢方法-開徑式傅立葉轉換紅外光光譜分析法 (NIEA A002.10C),2005。
[22] 張寶額,運用紅外光遙測技術執行石化工業區汙染監測計畫,行政院環境保護署,1999。
[23] N. Plant, C. Keen (2007) Application of Thermal Desorption to Occupational Exposure Monitoring. United States: PerkinElmer Life and Analytical Sciences.
[24] W. Robert (1999) Rapid Sample Preparation Method for Use with High Speed Gas Chromatography. United States: North Dakota University.
[25] D. Helmig (1999) Air Analysis by Gas Chromatography. Journal of Chromatography A 843, 129-146.
[26] J.L. Wang, C.C. Chang, K.Z. Lee (2012) In-Line Sampling with Gas Chromatography-Mass Spectrometry to Monitor Ambient Volatile Organic Compounds. Journal of Chromatography A 1248, 161-168.
[27] Y.C. Su, W.T. Liu, W.C. Liao, S.W. Chiang, J.L. Wang (2011) Full-Range Analysis of Ambient Volatile Organic Compounds by a New Trapping Method and Gas Chromatography/Mass Spectrometry. Journal of Chromatography A 1218, 5733-5742.
[28] 郭勝儒,碩士論文,空氣中氯乙烯、1,2-二氯乙烷GC/MS在線監測方法,化學學系,國立中央大學,2017。
[29] 王美珠,碩士論文,針對工業排放之汙染性有機氣態物質開發連續監測技術,化學學系,國立中央大學,2016。
[30] A.Maceira, L. Vallecillos, F. Borrull, R.M. Marce (2017) New Approach to Resolve the Humidity Problem in VOC Determination in Outdoor Air Samples Using Solid Adsorbent Tubes Followed by TD-GC-MS. Science of The Total Environment 599-600, 1718-1727.
[31] Q. Gong, K.L Demerjian (1995) Hydrocarbon Losses on a Regenerated Nation® Dryer. Journal of the Air & Waste Management Association 45, 490-493.
[32] N. Schmidbauer, M. Oehme (1986) Improvement of a Cryogenic Preconcentration Unit for C2-C6 Hydrocarbons in Ambient Air at ppt Levels. Journal of High Resolution Chromatography 9, 502-505.
[33] J.L. Wang, C.J. Chang, W.D. Chang, C. Chew, S.W. Chen (1999) Construction and Evaluation of Automated Gas Chromatography for the Measurement of Anthropogenic Halocarbons in the Atmosphere. Journal of Chromatography A 844, 259-269.
[34] J.L. Wang, S.W. Chen, C. Chew (1999) Automated Gas Chromatography with Cryogenic/Sorbent Trap for the Measurement of Volatile Organic Compounds in the Atmosphere. Journal of Chromatography A 863, 183-193.
[35] R.B. Wilson, B.D. Fitz, B.C. Mannion, T. Lai, R.K. Olund, J.C. Hoggard, R.E. Synovec (2012) High-Speed Cryo-Focusing Injection for Gas Chromatography: Reduction of Injection Band Broadening with Concentration Enrichment. Talanta 97, 9-15.
[36] J.L. Wang, W.L. Chen, Y.H. Lin, C.H. Tsai (2000) Cryogen Free Automated Gas Chromatography for the Measurement of Ambient Volatile Organic Compounds. Journal of Chromatography A 896, 31-39.
[37] J.L. Wang, C.H. Wu (2002) Construction and Validation of a Cryogen Free Gas Chromatography-Electron-Capture Detection System for the Measurement of Ambient Halocarbons. Analytica Chimica Acta 461, 85-95.
[38] J.L. Wang, G.Z. Din, C.C. Chan (2004) Validation of a Laboratory-Constructed Automated Gas Chromatograph for the Measurement of Ozone Precursors through Comparison with a Commercial Analogy. Journal of Chromatography A 1027, 11-18.
[39] D. Tanner, D. Helmig, J. Hueber, P. Goldan (2006) Gas Chromatography System for the Automated, Unattended, and Cryogen-Free Monitoring of C2 to C6 Non-Methane Hydrocarbons in the Remote Troposphere. Journal of Chromatography A 1111, 76-88.
[40] A. Ribes, G. Carrera, E. Gallego, X. Roca, M.A. Berenguer, X. Guardino (2007) Development and Validation of a Method for Air-Quality and Nuisance Odors Monitoring of Volatile Organic Compounds Using Multi-Sorbent Adsorption and Gas Chromatography/Mass Spectrometry Thermal Desorption System. Journal of Chromatography A 1140, 44-55.
[41] C.F. Ou-Yang, W.C. Liao, P.C. Wang, G.J. Fan, C.C. Hsiao, M.T. Chuang, C.C. Chang, N.H. Lin, J.L. Wang (2016) Construction of a Cryogen-Free Thermal Desorption Gas Chromatographic System with Off-the-Shelf Components for Monitoring Ambient Volatile Organic Compounds. Journal of Separation Science 39, 1489-99.
[42] T.M. Wu, G.R. Wu, H.M. Kao, J.L. Wang (2006) Using Mesoporous Silica MCM-41 for In-Line Enrichment of Atmospheric Volatile Organic Compounds. Journal of Chromatography A 1105, 168-175.
[43] Y.C. Su, H.M. Kao, J.L. Wang (2010) Mesoporous Silicate MCM-48 as an Enrichment Medium for Ambient Volatile Organic Compound Analysis. Journal of Chromatography A 1217, 5643-5651.
[44] R. Fuoco, A. Ceccarini, M. Onor, L. Marrara (1999) Analysis of Priority Pollutants in Environmental Samples by On-Line Supercritical Fluid Chromatography Cleanup-Cryo-Trap-Gas Chromatography-Mass Spectrometry. Journal of Chromatography A 846, 387-393.
[45] A.C. Sulaiman, N.A.M. Amin, M.H. Basha, M.S.A. Majid, N.F.M. Nasir, I. Zaman (2018) Cooling Performance of Thermoelectric Cooling (TEC) and Applications: A review. MATEC Web of Conferences 225, 03021.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top