(44.192.66.171) 您好!臺灣時間:2021/05/18 22:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:朱晨瑄
研究生(外文):Chen-Hsuan Chu
論文名稱:以線上熱脫附氣相層析質譜法監測空氣中有害空氣污染物
論文名稱(外文):On-line thermal desorption (TD)-GC/MS analysis of hazardous air pollutants (HAPs)
指導教授:王家麟王家麟引用關係
指導教授(外文):Jia-Lin Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:136
中文關鍵詞:線上連續監測有害空氣汙染物環境內標氟氯碳化物離子源劣化
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
有害空氣污染物 (Hazardous Air Pollutants, HAPs) 對民眾健康危害影響為近年來備受關注的議題,行政院環保署於民國106年預告「固定污染源有害空氣污染物排放標準」草案,優先管制72項空氣污染物。
為了即時掌握HAPs排放來源及有效掌握大氣中HAPs濃度藉以評估健康風險,本研究嘗試開發一套熱脫附氣相層析質譜儀在線分析方法,可獲得28種HAPs濃度小時連續數據。
本研究利用前濃縮儀 (Thermal Desorption, TD) 串連GC/MS成為一在線系統 (on-line TD-GC/MS) ,並因應台灣高濕度環境,於前端加裝除水系統,以環檢所NIEA A715.15B標準方法為基礎,建立相關品保品管規範,其中包含檢量線建立、偵測極限、準確度、精密度等。檢量線結果顯示,RSD值介於2.59% ~ 27.3%之間,R2值介於0.993 ~ 1.000,經預估確認得方法偵測極限為0.11 ~ 1.76 ppb,而準確度與精確度結果,其回收率介於72.40% ~ 130.50%之間,RSD值介於1.42% ~ 16.94%。
建立完成相關條件後,本研究分別於北部工業區及南部工業區附近進行兩場次實地監測,時間分別為2019年10月5日至11月7日及2020年03月17日至04月29日,兩個實場測試結果皆有測到地區性特殊事件並與其他分析方法進行趨勢比較以為驗證。在平均濃度上的比較,第一場次偵測到的總濃度為10.05 ppb,而第二場次濃度則為71.12 ppb,由於第一場次為東北風季節,工業區位於下風處,導致於第一場次的監測濃度較低;而第二場次監測期間發生多次高值現象平均後造成污染物濃度偏高。
在驗證on-line TD-GC/MS方法之可靠度上,我們使用採樣罐進行隨機採樣。本研究於第一場次採樣結果發現2019/10/28中午11點左右on-line TD-GC/MS偵測到CCl4之瞬間高值,約為2.74 ppb,而採樣罐亦在當下恰巧採集到CCl4之濃度約為2.3 ppb,連續式監測結果與隨機式採樣結果比對濃度相近,可證實本研究Online GC/MS於連續監測上的表現優良,相較於離線式隨機採樣,不僅可得知環境濃度趨勢及未知成分,亦可以捕捉到突發高值現象,有效彌補離線式採樣盲目、隨機的缺點。
質譜儀雖然具有強大的定性及定量能力,但經由兩次實場測試中發現,離子源劣化的速度相當快,本研究利用內標準品進行長期的比對,結果顯示,當每次更換新的離子源後,內標的感度約在四至五天會下降80%,而本次分析物中含有氟氯碳化物,其濃度於大氣中穩定存在,故常被作為環境內標,而本研究將真實採樣時偵測到的大氣內標CFC-11與原始內標進行趨勢比對,可發現下降趨勢與原始已知濃度之內標相同,可以佐證感度下降的主因與儀器本身有關。然而在尚未開發出可以更持久性使用的離子源前,離子源應例行性7-10天清洗一次。未來將繼續改善離子源相關問題,提出更有效的連續分析方法,達到周界連續監測並改善維護保養的難度。
Hazardous Air Pollutants (HAPs) are closely associated with public health. This issue has received much attention in recent years. In 2017, the Environmental Protection Administration (EPA) of Taiwan announced the draft of “Emission Standards for Hazardous Air Pollutants from Stationary Pollution” to control 72 HAPs. In order to immediately control the source of HAPs emissions and effectively access ambient concentrations of HAPs, the development of a method to continuously monitor HAPs in atmosphere with gas chromatography mass spectrometry (GC/MS) to provide hourly continuous data of HAPs has undergone intensive research by our laboratory funded by Taiwan EPA.
In this research, we used the thermal desorption (TD) technique for pre-concentration to couple with GC/MS. Due to the perennial high humidity on the island, water removal prior to TD-GC/MS analysis is critical. Our under-developed on-line TD-GC/MS method for HAPs is mainly based on the existing NIEA A715.15B method in terms of the requirements of quality control/assurance for target HAPs. These requirements include concentration calibration, as well as the assessment of accuracy (recovery), precision and method detection limits (MDL). Our QA results show that the relative standard deviations (RSD) range from 2.59% to 27.3% The linearity (R2) ranges 0.993 ~ 1.000. The MDL range 0.11 ~ 1.76 ppb. The accuracy (recovery) precision (relative standard deviations %) is 72.40% ~ 130.50% and 1.42% ~ 16.94%.
After the completion of QA assessment in the laboratory, a month-long field measurement was conducted from October 5 to November 7, 2019 in Taoyuan city and March 17 to April 29, 2020 in Kaohsiung city. Both were targeting industrial emissions and had detected industrial related species on several occasions. The field measurement was inter-compared with other methods of PTR-QMS and GC-FID with comparable results observed. The average concentration of all species summed during the first field measurement period was 10.0 ppb compared to 71.1 ppb for the second. The much lower level in the first period was due to the fact that measurement was conducted during the northeasterly monsoon season and the monitoring site was at the upwind of the target industrial zone. The second period observed higher levels of pollutants as well as more local emission events due to the favorable location and meteorology.
In order to ensure the credibility of the on-line TD-GC/MS data, we also conducted canister sampling at both sites. It was found that carbon tetrachloride which was banned by the Montreal Protocol, but detected by both the canister sampling and TD-GC/MS on October 28, 2019 with comparable results of 2.3 ppb vs. 2.7 ppb, respectively, which effectively validated the online TD-GC/MS method. This online method not only can provide the temporal trends and identify unknown compounds, but also capture the unexpected emission episodes.
Although the mass spectrometer has strong qualitative and quantitative capabilities, a major problem with the GC/MS method was found in the on-line mode. The rapid formation of oxides on the filament of the ion source in MS deteriorates the sensitivity over time. Based on the signals of the internal standards the sensitivity dropped 80% within the first 4-5 days. In the study, we also used chlorofluorocarbons, whose concentration are stable in the atmosphere as the "intrinsic" internal standards. The signal of CFC-11 (CCl3F) was compared with those of the originally added internal standards, and the same downward trend as those of the original internal standards also appeared, confirming that the decrease in sensitivity is owing to the MS detection. Frequent cleaning the ion source every 7-10 days was adopted as a tentative solution before a more permanent one developed by the MS industry becomes available.
摘要 i
Abstract iii
謝誌 v
目錄 vii
圖目錄 ix
表目錄 xiii
第一章、前言 1
1-1 研究背景 1
1-2 研究動機及目的 4
1-3有害空氣污染物管理進程與回顧 6
1-3-1美國針對HAPs之管理辦法 6
1-3-2國內針對HAPs之管理辦法 7
1-4 監測技術之文獻回顧 11
1-4-1 離線式分析 13
1-4-2 連續式分析 19
第二章、儀器原理與設備 21
2-1 熱脫附儀 (Thermal Desorption) 21
2-2 除水系統 (Water Condensation) 23
2-3內標準品 (Internal Standard) 25
2-3-1環境追蹤內標準品 27
2-4自動化連續監測系統建立 30
第三章、分析方法與條件建立 33
3-1 熱脫附系統測試 33
3-2 除水系統測試 36
3-3 層析方法建立 41
3-4 檢量線建立 42
3-5 準確度與精密度 49
3-5-1 準確度測試 49
3-5-2 精確度測試 50
3-6 方法偵測極限建立 54
第四章、研究成果與討論 59
4-1實場測試-第一場次 (北部工業區) 63
4-1-1環境介紹 63
4-1-2污染物監測結果 65
4-1-3污染物監測結果比對 71
4-1-4特殊事件 74
4-2 實場測試-第二場次 (南部工業區) 79
4-2-1環境介紹 79
4-2-2污染物監測結果 81
4-2-3污染物監測結果比對 91
4-3實場測試結果與討論 95
4-3-1環境內標應用 99
4-4針對周界環境進行連續監測方法 102
第五章、結論與未來展望 105
文獻參考 107
[1] M. Talibov, J. Sormunen, J. Hansen, K. Kjaerheim, J.I. Martinsen, P. Sparen, L. Tryggvadottir, E. Weiderpass, E. Pukkala (2018) Benzene Exposure at Workplace and Risk of Colorectal Cancer in Four Nordic Countries. Cancer Epidemiology 55, 156-161.
[2] R. Hamid, H.M. Mojgan, M. Parthasarathi, L.L. Amanda, S. Majid (2020) Emissions of Volatile Organic Compounds from Crude Oil Processing – Global Emission Inventory and Environmental Release. Science of The Total Environment 727, 138654.
[3] B. Lee (2012) Highlights of the Clean Air Act Amendments off 1990. Journal of the Air & Waste Management Association 41, 16-19.
[4] U.S. EPA, The original list of hazardous air pollutants as follows. http://www.epa.gov/ttn/atw/188polls.html. [24 Feb. 2016]
[5] A. Kiendler-Scharr, J. Wildt, M.D. Maso, T. Hohaus, E. Kleist, T.F. Mentel, R. Tillmann, R. Uerlings, U. Schurr, A. Wahner (2009) New Particle Formation in Forests Inhibited by Isoprene Emissions. Nature 461, 381-384.
[6] 40 C.F.R.P. 51 (2019) Requirements for Preparation, Adoption, and Submittal of Implementation Plans. Office of the Federal Register (OFR) : Washington, DC.
[7] 揮發性有機物空氣污染管制及排放標準,行政院環保署環境檢驗所,2013。
[8] T.B. Ryerson, M. Trainer, J.S. Holloway, D.D. Parrish, L.G. Huey, D.T. Sueper, G.J. Frost, S.G. Donnelly, S. Schauffler, E.L. Atlas, W.C. Kuster, P.D. Goldan, G. Hübler, J.F. Meagher, F.C. Fehsenfeld (2001) Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. Science 291, 719-723.
[9] M.C. Jacobson, H.C. Hansson, K.J. Noone, R.J. Charlson (2000) Organic Atmospheric Aerosols: Review and State of the Science. Reviews of Geophysics 38, 267-294.

[10] C.D. Jain, H.S. Gadhavi, L.K. Sahu, A. Jayaraman (2017) Volatile Organic Compounds (VOCs) in The Air, Their Importance and Measurements. Earth Science India 10, 1-15.
[11] 固定污染源有害空氣污染物排放標準,行政院環保署環境檢驗所,2019。
[12] 固定污染源有害空氣污染物健康風險評估及防制技術講習會,工業技術研究院,2019。
[13] 陳王琨,台灣與美國實施空氣品質管理計畫的歷史經驗回顧,2001年宜蘭縣環境會議實錄,宜蘭縣政府,宜蘭,2001。
[14] U.S. Congress. (1990) Clean Air Act Amendments of 1990, U.S. Government Printing Office, Washington, DC.
[15] 40 C.F.R.P. 61 (1999) National Emission Standards for Hazardous Air Pollutants. Office of the Federal Register (OFR): Washington, DC.
[16] 40 C.F.R.P. 63 (1999) National Emission Standards for Hazardous Air Pollutants. Office of the Federal Register (OFR): Washington, DC.
[17] U.S. EPA, Integrated Urban Air Toxics Strategy.
https://www.epa.gov/urban-air-toxics/integrated-urban-air-toxics-strategy. [19 Jan. 2017]
[18] 有害空氣污染物重要行業別排放標準,行政院環保署環境檢驗所,1998。
[19] 廢棄物焚化爐空氣污染物排放標準,行政院環境保護署環境檢驗所,2006。
[20] 固定污染源有害空氣污染物排放標準,行政院環保署環境檢驗所,2017。
[21] 氯乙烯及聚氯乙烯製造業空氣污染物管制及排放標準,行政院環保署環境檢驗所,2017。
[22] U.S. EPA (1984) Toxic Organics - 1 (TO-1): Method for The Determination of Volatile Organic Compounds in Ambient Air Using Tenax® Adsorption and Gas Chromatography/Mass Spectrometry (GC/MS).
[23] U.S. EPA (1984) Toxic Organics - 2 (TO-2): Method for The Determination of Volatile Organic Compounds in Ambient Air by Carbon Molecular Sieve Adsorption and Gas Chromatography/Mass Spectrometry (GC/MS).
[24] U.S. EPA (1999) Toxic Organics - 17 (TO-17): Compendium Method TO-17 Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling onto Sorbent Tubes.
[25] R. Borusiewicz , J. Zieba-Palus (2007) Comparison of The Effectiveness of Tenax TA and Carbotrap 300 in Concentration of Flammable Liquids Compounds. Journal of Forensic Sciences 52, 70-74.
[26] ASTM D6196-15e1, Standard Practice for Choosing Sorbents, Sampling Parameters and Thermal Desorption Analytical Conditions for Monitoring Volatile Organic Chemicals in Air, ASTM International, West Conshohocken, PA, 2015.
[27] 行政院環保署環境檢驗所,空氣中氣態有機溶劑檢驗方法—以活性碳吸附之氣相層析⁄火焰離子化偵測法 (NIEA A710.11C),1992。
[28] 行政院環保署環境檢驗所,空氣中氣態芳香烴化合物檢驗方法-以活性碳吸附之氣相層析⁄火焰離子化偵測法 (NIEA A719.11C),1992。
[29] U.S. EPA (1999) Toxic Organics - 14A (TO-14A): Compendium Method TO-14A Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Specially Prepared Canisters with Subsequent Analysis by Gas Chromatography.
[30] U.S. EPA (2019) Toxic Organics - 15A (TO-15A): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography–Mass Spectrometry (GC-MS).
[31] 行政院環保署環境檢驗所,空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法 (NIEA A715.15B),2014。
[32] 行政院環保署環境檢驗所,空氣中總揮發性有機化合物檢測方法-不銹鋼採樣筒/火焰離子化偵測法 (NIEA A732.10C),2006。
[33] 行政院環保署環境檢驗所,空氣中環氧氯丙烷、乙酸丁酯、丙烯酸乙酯及丙烯酸丁酯等揮發 性有機物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法 (NIEA A741.10B),2014。
[34] U.S. EPA (1984) Toxic Organics - 3 (TO-3): Method for The Determination of Volatile Organic Compounds in Ambient Air Using Cryogenic Preconcentration Techniques and Gas Chromatography with Flame Ionization and Electron Capture Detection.
[35] U.S. EPA (1984) Toxic Organics - 5 (TO-5): Method for The Determination of Aldehydes and Ketones in Ambient Air Using High Performance Liquid Chromatography (HPLC).
[36] U.S. EPA (1986) Toxic Organics - 6 (TO-6): Method for The Determination of Phosgene in Ambient Air Using High Performance Liquid Chromatography.
[37] U.S. EPA (1986) Toxic Organics - 7 (TO-7): Method for The Determination of Nitrosodimethylamine in Ambient Air Using Gas Chromatrography.
[38] U.S. EPA (1986) Toxic Organics - 8 (TO-8): Method for The Determination of Phenol and Methylphenols (cresols) in Ambient Air Using High Performance Liquid Chromatography.
[39] U.S. EPA (1999) Toxic Organics - 11A (TO-11A): Compendium Method TO-11A Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC) [Active Sampling Methodology].
[40] U.S. EPA (1999) Toxic Organics - 12 (TO-12): Method for The Determination of Non-methane Organic Compounds (NMOC) in Ambient Air Using Cryogenic Preconcentration and Direct Flame Ionization Detection (PDFID).
[41] U.S. EPA (1999) Toxic Organics - 16 (TO-16): Compendium Method TO-16 Long-Path Open-Path Fourier Transform Infrared Monitoring of Atmospheric Gases.
[42] 行政院環保署環境檢驗所,排放管道中C5-C10非極性氣態有機物檢測方法-採樣袋採樣/氣相層析質譜分析法 (NIEA A734.70B),2007。
[43] 行政院環保署環境檢驗所,空氣中揮發性含鹵素碳氫化合物檢驗方法-以Tenax-TA吸附劑採樣之氣相層析法 (NIEA A714.11C),2011。
[44] 行政院環保署環境檢驗所,空氣中丙烯醯胺、己內醯胺、二甲基亞碸及甲基甲醯胺檢測方法-氣相層析/火焰離子化偵測法 (NIEA A742.10B),2014。
[45] 行政院環保署環境檢驗所,周界空氣中N-甲基吡咯酮、乙二醇及異丁醇等揮發性有機物檢測方法-吸附管採樣/氣相層析質譜儀法 (NIEA A746.10B),2015。
[46] 行政院環保署環境檢驗所,排放管道中氣態有機化合物檢測方法-採樣袋採樣/氣相層析火焰離子化偵測法 (NIEA A722.76B),2019。
[47] 行政院環保署環境檢驗所,排放管道中環氧氯丙烷等氣態有機化合物檢測方法-採樣袋採樣/氣相層析火焰離子化偵測法 (NIEA A738.71B),2020。
[48] 行政院環保署環境檢驗所,空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法 (NIEA A505.12B),2013。
[49] 行政院環保署環境檢驗所,排放管道中氮氧化物自動檢測方法-氣體分析儀法 (NIEA A411.75C),2016。
[50] 行政院環保署環境檢驗所,排放管道中二氧化硫自動檢測方法-非分散性紅外光法、紫外光法、螢光法 (NIEA A413.75C),2016。
[51] 行政院環保署環境檢驗所,排放管道中二氧化碳自動檢測法-非分散性紅外光法 (NIEA A415.73A),2016。
[52] 行政院環保署環境檢驗所,排放管道中氧自動檢測方法-氣體分析儀法 (NIEA A432.74C),2016。

[53] 行政院環保署環境檢驗所,排放管道中總有機氣體檢測方法-火燄離子化分析儀 (NIEA A433.71C),2000。
[54] 行政院環保署環境檢驗所,排放管道中總還原硫檢測方法-氣相層析/火焰光度偵測器法 (NIEA A439.70C),1997。
[55] 行政院環保署環境檢驗所,排放管道中一氧化碳自動檢驗法-非分散性紅外光法 (NIEA A704.06C),2020。
[56] 行政院環保署環境檢驗所,排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法-線上火燄離子化偵測法 (NIEA A723.74B),2020。
[57] A. Maceira, L. Vallecillos, F. Borrull, R.M. Marce (2017) New Approach to Resolve The Humidity Problem in VOC Determination in Outdoor Air Samples Using Solid Adsorbent Tubes Followed by TD-GC-MS. Science of the Total Environment 599-600, 1718-1727.
[58] R. Simo, J.O. Grimalt, J. Albaiges (1993) Field Sampling and Analysis of Volatile Reduced Sulphur Compounds in Air, Water and Wet Sediments by Cryogenic Trapping and Gas Chromatography. Journal of Chromatography A 655, 301-307.
[59] A. Kumar, I. Víden (2007) Parameters Optimization for the Measurement of VOCs by Canister System. Polish Journal of Environmental Studies 16, 835-840.
[60] 郭勝儒,碩士論文,空氣中氯乙烯、1, 2-二氯乙烷 GC/MS 在線監測方法,化學學系,國立中央大學,2017。
[61] 蘇源昌,碩士論文,內部標準在氣相層析質譜儀分析揮發性有機物的效能探討,化學學系,國立中央大學,2006。
[62] M.J. Molina, F.S. Rowland (1974) Stratospheric Sink for Chlorofluoromethanes: Chlorine Atomc-Atalysed Destruction of Ozone. Nature 249, 810-812.

[63] J.L. Wang, C. Chew, S.W. Chen, S.R. Kuo (2000) Concentration Variability of Anthropogenic Halocarbons and Applications as Internal Reference in Volatile Organic Compound Measurements. Environmental Science & Technology 34, 2243-2248.
[64] C.M. Karbiwnyk, C.S. Mills, D. Helmig, J. Birks (2003) Use of Chlorofluorocarbons as Internal Standards for the Measurement of Atmospheric Non-Methane Volatile Organic Compounds Sampled onto Solid Adsorbent Cartridges. Environmental Science & Technology 37, 1002-1007.
[65] S. Montzka, G. Dutton, P. Yu, E. Ray, R. Portmann, J. Danie (2018) An Unexpected and Persistent Increase in Global Emissions of Ozone-depleting CFC-11. Nature 557, 413-417.
[66] U.S. EPA, Chapter One of the SW-846 Compendium: Project Quality Assurance and Quality Control.
https://www.epa.gov/hw-sw846/chapter-one-sw-846-compendium-project-quality-assurance-and-quality-control. [27 Jan. 2017]
[67] 環境檢驗方法偵測極限測定指引,行政院環保署環境檢驗所,2005。
[68] 聚氨基甲酸脂合成皮業揮發性有機物空氣污染管制及排放標準,行政院環保署環境檢驗所,2015。
[69] S.S. Tang, S.J. Li (2012) Influence of Methyl Acetate on Process of Acetic Acid Dehydration via Azeotropic Distillation. Journal of East China University of Science and Technology 38, 606-611.
[70] U.S.A Agency for Toxic Substances and Disease Registry, Toxicological Profiles.
https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=35. [3 Mar. 2011]
[71] 袁中新,環境科學,巨流圖書股份有限公司,高雄市,2009。
[72] N. Kenya, The Secretariat for the Vienna Convention for the Protection of the Ozone Layer and for the Montreal Protocol on Substances that Deplete the Ozone Layer, Ozone Secretariat, Freiburg, 2018.

[73] 蒙特婁議定書列管化學物質管理辦法總說明,行政院環保署環境檢驗所,2007。
[74] R.B. Pierce, T. Duncan, A. Fairlie (1993) Chaotic Advection in the Stratosphere - Implications for The Dispersal of Chemically Perturbed Air from the Polar Vortex. Journal of Geophysical Research 98, 18589-18595.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top