(3.227.0.150) 您好!臺灣時間:2021/05/08 09:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林相慶
研究生(外文):Xiang-Ching Lin
論文名稱:開發應用於鈣鈦礦太陽能電池之新穎三聯噻吩類型及苯并咪唑類型電洞傳輸材料
論文名稱(外文):Development of Terthiophene and Benzimidazole Based Hole Transporting Materials for Perovskite Solar Cell Applications
指導教授:李文仁李文仁引用關係
指導教授(外文):Wen-Ren Li
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:108
中文關鍵詞:鈣鈦礦太陽能電池電洞傳輸層材料
外文關鍵詞:Perovskite solar cellhole transporting materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在能源短缺以及環保意識逐漸增強的時代中,再生能源的利用成為了重要的議題,太陽能可說是最為人所重視,並且發展也較成熟。鈣鈦礦太陽能電池的發展,在近10年內光電轉換效率從4%成長到25%,對於電洞傳輸層的研究也是十分重要的,一種好的電洞傳輸材料,能有效提取電荷,進而提升器件的光電轉換效率。
本篇分為兩主題,主題(I)為設計以三聯噻吩(2,2':5',2"-terthiophene)為主體之電洞傳輸材料DI101, DI102,藉由改變推拉電子基,觀察其對光電轉換效率的影響。DI系列材料為非晶態物質,並且有好的熱穩定性,及與鈣鈦礦吸光層能階有好的匹配,非常具有潛力成為良好的電洞傳輸材料。
主題(II)為承襲實驗室萬駿學長所合成出的WWC103,並且將末端acceptor group修飾成donor group,使分子呈D-π-D形式之電洞傳輸材料XCL106,XCL106顯示出良好的熱穩定性,溶解度,電荷傳輸能力,並且能與鈣鈦礦吸光層的能階有好的匹配,非常具有潛力成為良好的電洞傳輸材料。
In the era of energy shortages and increasing awareness of environmental protection, the use of renewable energy has become more important issue. Solar Cell is taken more and more seriously and its development has gradually matured.
The power conversion efficiency(PCE) of perovskite solar cells has grown from 4% to 25% in the past few years.
To improve the PCE, development of hole transporting material(HTM) which has excellent ability of positive charge extraction and transportation is one of the important factors.
This article is divided into two themes. Topic(I) is synthesized two terthiophene-based hole transporting materials named DI101, DI102, and observe the effect on the PCE by changing the donor group and acceptor group. The compounds of DI series exhibit amorphous property and have good thermal stability. However, DI series which have good match with the energy level of perovskite, gives it potential as a promising HTM for the further advance of PSCs.
Topic (II) is inherited from Wan Chun’s project. We modified WWC103’s terminal group into a donor group, so that the molecule is in the form of D-π-D hole transporting material XCL106. XCL106 shows good thermal stability, solubility, and charge transport capacity. The better performance gives it potential as a promising HTM for the further advance of PSCs.
目錄
中文摘要 i
Abstract ii
誌謝辭 iii
一、緒論 1
1-1 前言 1
1-2 太陽能電池 4
1-3 鈣鈦礦太陽能電池 5
1-4電洞傳輸材料文獻回顧 14
二、結構設計概念與動機(第一部分) 21
2-1 合成策略 24
三、結果討論(第一部分) 30
3-1 物理與化學性質探討 30
3-2 元件測試 37
3-3 總結與未來展望 38
四、結構設計概念與動機(第二部分) 39
五、結果討論(第二部分) 44
5-1 物理與化學性質探討 44
5-2 元件測試 51
5-3 總結與未來展望 52
六、實驗步驟與材料數據 53
6-1 實驗藥品 53
6-2 實驗儀器 53
6-3 實驗步驟與數據(第一部分) 56
附錄 72
參考文獻 91
1. Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. Y., Solar cell efficiency tables (version 52). 2018, 26 (7), 427-436.
2. Ou, Q.; Bao, X.; Zhang, Y.; Shao, H.; Xing, G.; Li, X.; Shao, L.; Bao, Q., Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Materials Science 2019, 1 (4), 268-287.
3. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science 2015, 8 (5), 1602-1608.
4. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. Journal of the American Chemical Society 2015, 137 (27), 8696-8699.
5. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J., Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. 2014, 24 (1), 151-157.
6. Ding, B.; Huang, S.-Y.; Chu, Q.-Q.; Li, Y.; Li, C.-X.; Li, C.-J.; Yang, G.-J., Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. Journal of Materials Chemistry A 2018, 6 (22), 10233-10242.
7. Bai, Y.; Yu, H.; Zhu, Z.; Jiang, K.; Zhang, T.; Zhao, N.; Yang, S.; Yan, H., High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer. Journal of Materials Chemistry A 2015, 3 (17), 9098-9102.
8. Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M. In The role of the hole-transport layer in perovskite solar cells - reducing recombination and increasing absorption, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 8-13 June 2014; 2014; pp 1563-1566.
9. Xu, C.; Liu, Z.; Lee, E.-C., High-performance metal oxide-free inverted perovskite solar cells using poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) as the hole transport layer. Journal of Materials Chemistry C 2018, 6 (26), 6975-6981.
10. Cho, K. T.; Cavazzini, M.; Rakstys, K.; Orlandi, S.; Paek, S.; Franckevičius, M.; Kanda, H.; Gegevičius, R.; Emmanuel, Q. V.; Pozzi, G.; Nazeeruddin, M. K., Perovskite Solar Cells: 18% Efficiency Using Zn(II) and Cu(II) Octakis(diarylamine)phthalocyanines as Hole-Transporting Materials. ACS Applied Energy Materials 2019, 2 (9), 6195-6199.
11. Kung, P.-K.; Li, M.-H.; Lin, P.-Y.; Chiang, Y.-H.; Chan, C.-R.; Guo, T.-F.; Chen, P., A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. 2018, 5 (22), 1800882.
12. Lindholm, F. A.; Fossum, J. G.; Burgess, E. L., Application of the superposition principle to solar-cell analysis. IEEE Transactions on Electron Devices 1979, 26, 165.
13. Baruch, P.; De Vos, A.; Landsberg, P. T.; Parrott, J. E., On some thermodynamic aspects of photovoltaic solar energy conversion. Solar Energy Materials and Solar Cells 1995, 36 (2), 201-222.
14. Back, H.; Kim, G.; Kim, J.; Kong, J.; Kim, T. K.; Kang, H.; Kim, H.; Lee, J.; Lee, S.; Lee, K., Achieving long-term stable perovskite solar cells via ion neutralization. Energy & Environmental Science 2016, 9 (4), 1258-1263.
15. Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H.; De Angelis, F.; Abate, A.; Hagfeldt, A.; Pozzi, G.; Graetzel, M.; Nazeeruddin, M. K., A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy 2016, 1 (2), 15017.
16. Wang, Y.; Chen, W.; Wang, L.; Tu, B.; Chen, T.; Liu, B.; Yang, K.; Koh, C. W.; Zhang, X.; Sun, H.; Chen, G.; Feng, X.; Woo, H. Y.; Djurišić, A. B.; He, Z.; Guo, X., Dopant-Free Small-Molecule Hole-Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21%. 2019, 31 (35), 1902781.
17. Li, Y.; Cole, M. D.; Gao, Y.; Emrick, T.; Xu, Z.; Liu, Y.; Russell, T. P., High-Performance Perovskite Solar Cells with a Non-doped Small Molecule Hole Transporting Layer. ACS Applied Energy Materials 2019, 2 (3), 1634-1641.
18. Strohriegl, P.; Jesberger, G.; Heinze, J.; Moll, T., The higher homologues of triphenylamine: Model compounds for poly(N-phenyl-1,4-phenyleneamine). 1992, 193 (4), 909-919.
19. Yasuhiko, S.; Tomokazu, K.; Naoki, N., Starburst Molecules for Amorphous Molecular Materials. 4,4′,4″-Tris(N,N-diphenylamino)triphenylamine and 4,4′,4″-Tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine. 1989, 18 (7), 1145-1148.
20. Li, Y.; Xu, Z.; Zhao, S.; Qiao, B.; Huang, D.; Zhao, L.; Zhao, J.; Wang, P.; Zhu, Y.; Li, X.; Liu, X.; Xu, X., Highly Efficient p-i-n Perovskite Solar Cells Utilizing Novel Low-Temperature Solution-Processed Hole Transport Materials with Linear π-Conjugated Structure. 2016, 12 (35), 4902-4908.
21. Higuchi, A.; Inada, H.; Kobata, T.; Shirota, Y., Amorphous molecular materials: Synthesis and properties of a novel starburst molecule, 4,4′,4″ -Tri(N-phenothiazinyl)triphenylamine. 1991, 3 (11), 549-550.
22. Choi, H.; Cho, J. W.; Kang, M.-S.; Ko, J., Stable and efficient hole transporting materials with a dimethylfluorenylamino moiety for perovskite solar cells. Chemical Communications 2015, 51 (45), 9305-9308.
23. Molina-Ontoria, A.; Zimmermann, I.; Garcia-Benito, I.; Gratia, P.; Roldán-Carmona, C.; Aghazada, S.; Graetzel, M.; Nazeeruddin, M. K.; Martín, N., Benzotrithiophene-Based Hole-Transporting Materials for 18.2 % Perovskite Solar Cells. 2016, 55 (21), 6270-6274.
24. Huang, C.; Fu, W.; Li, C.-Z.; Zhang, Z.; Qiu, W.; Shi, M.; Heremans, P.; Jen, A. K. Y.; Chen, H., Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society 2016, 138 (8), 2528-2531.
25. Naito, K.; Miura, A., Molecular design for nonpolymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties. The Journal of Physical Chemistry 1993, 97 (23), 6240-6248.
26. Pudzich, R.; Fuhrmann-Lieker, T.; Salbeck, J., Spiro Compounds for Organic Electroluminescence and Related Applications. In Emissive Materials Nanomaterials, Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; pp 83-142.
27. Malinauskas, T.; Tomkute-Luksiene, D.; Sens, R.; Daskeviciene, M.; Send, R.; Wonneberger, H.; Jankauskas, V.; Bruder, I.; Getautis, V., Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. ACS Applied Materials & Interfaces 2015, 7 (21), 11107-11116.
28. Ganesan, P.; Fu, K.; Gao, P.; Raabe, I.; Schenk, K.; Scopelliti, R.; Luo, J.; Wong, L. H.; Grätzel, M.; Nazeeruddin, M. K., A simple spiro-type hole transporting material for efficient perovskite solar cells. Energy & Environmental Science 2015, 8 (7), 1986-1991.
29. Vaitukaityte, D.; Wang, Z.; Malinauskas, T.; Magomedov, A.; Bubniene, G.; Jankauskas, V.; Getautis, V.; Snaith, H. J., Efficient and Stable Perovskite Solar Cells Using Low-Cost Aniline-Based Enamine Hole-Transporting Materials. 2018, 30 (45), 1803735.
30. Li, Z. a.; Zhu, Z.; Chueh, C.-C.; Jo, S. B.; Luo, J.; Jang, S.-H.; Jen, A. K. Y., Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells. Journal of the American Chemical Society 2016, 138 (36), 11833-11839.
31. Chi, W.-J.; Li, Q.-S.; Li, Z.-S., Effect of thiophene chain lengths on the optical and hole transport properties for perovskite solar cells. Synthetic Metals 2016, 211, 107-114.
32. Paek, S.; Zimmermann, I.; Gao, P.; Gratia, P.; Rakstys, K.; Grancini, G.; Nazeeruddin, M. K.; Rub, M. A.; Kosa, S. A.; Alamry, K. A.; Asiri, A. M., Donor–π–donor type hole transporting materials: marked π-bridge effects on optoelectronic properties, solid-state structure, and perovskite solar cell efficiency. Chemical Science 2016, 7 (9), 6068-6075.
33. Thelakkat, M., Star-Shaped, Dendrimeric and Polymeric Triarylamines as Photoconductors and Hole Transport Materials for Electro-Optical Applications. 2002, 287 (7), 442-461.
34. Petrus, M. L.; Bein, T.; Dingemans, T. J.; Docampo, P., A low cost azomethine-based hole transporting material for perovskite photovoltaics. Journal of Materials Chemistry A 2015, 3 (23), 12159-12162.
35. Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L., Computational Explorations of Mechanisms and Ligand-Directed Selectivities of Copper-Catalyzed Ullmann-Type Reactions. Journal of the American Chemical Society 2010, 132 (17), 6205-6213.
36. Bailie, C. D.; Unger, E. L.; Zakeeruddin, S. M.; Grätzel, M.; McGehee, M. D., Melt-infiltration of spiro-OMeTAD and thermal instability of solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics 2014, 16 (10), 4864-4870.
37. Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C., Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. 2011, 23 (20), 2367-2371.
38. Wang, Y.; Yang, Y.; Uhlik, F.; Slanina, Z.; Han, D.; Yang, Q.; Yuan, Q.; Yang, Y.; Zhou, D.-Y.; Feng, L., Enhancing photovoltaic performance of inverted perovskite solar cells via imidazole and benzoimidazole doping of PC61BM electron transport layer. Organic Electronics 2020, 78, 105573.
電子全文 電子全文(網際網路公開日期:20250701)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔