(3.80.6.131) 您好!臺灣時間:2021/05/15 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏宏
研究生(外文):Po-Hung Chen
論文名稱:製備奈米鈀金屬於氮摻雜中孔洞碳複合材料在有機催化反應之應用
指導教授:高憲明
指導教授(外文):Hsien-Ming Kao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:153
中文關鍵詞:中孔洞碳材催化鈀金屬
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 I
ABSTRACT VII
目錄 IX
圖目錄 XV
表目錄 XXI
第一章 序論 1
第壹部分 鈀金屬在中孔洞碳氮材催化鈴木偶聯反應 1
1-1 中孔洞二氧化矽 1
1-1-1中孔洞材料之介紹 1
1-1-2中孔洞二氧化矽合成方法 4
1-1-3軟性模板-微胞結構 6
1-2 有序中孔洞碳材 9
1-2-1奈米模鑄法(Nanocasting)合成機制 11
1-2-2奈米模鑄法合成有序中孔洞碳材之發展 12
1-3 有序中孔洞碳氮材 17
1-3-1奈米模鑄法合成有序中孔洞碳氮材之發展 19
1-3-2 鈀金屬催化有機偶聯反應 26
1-3-3鈀金屬催化Suzuki-Miyaura反應機制介紹 29
1-3-4奈米鈀金屬催化Suzuki-Miyaura反應文獻回顧 30
第貳部分 鈀金屬在中孔洞4-硝基苯酚還原反應 33
1-4 4-硝基苯酚介紹 33
1-4-1 4-硝基苯酚還原機制介紹 34
1-5 研究動機與目的 38
第二章 實驗部分 40
2-1 實驗藥品 40
2-2 鈀金屬催化Suzuki-Miyaura反應實驗 42
2-2-1三維立方Ia3d中孔洞管狀碳材CMK-9合成 42
2-2-2三維立方Ia3d中孔洞管狀碳氮材N-CMK9合成 42
2-2-3以PdCl2為前驅物還原至CMK-9與N-CMK9之中 43
2-2-3.1利用雙還原劑化學還原法 43
2-2-4利用Pd(x)@CMK-9與Pd(x)@N-CMK9催化Suzuki-Miyaura反應實驗 45
2-2-5催化Suzuki-Miyaura反應重複使用實驗 46
2-3 鈀金屬催化4-硝基苯酚還原實驗 47
2-3-1 利用Pd(x)@CMK-9及Pd(x)@N-CMK9催化4-硝基苯酚還原實驗 47
2-3-2 Pd(x)@N-CMK9催化4-硝基苯酚還原重複實驗 47
2-4 實驗設備 48
2-4-1實驗合成設備 48
2-4-2實驗鑑定儀器 48
第三章 結果與討論 50
第壹部分 鈀金屬在中孔洞碳氮材催化鈴木偶聯反應 50
3-1 Pd(x)@CMK-9以及Pd(x)@N-CMK9材料系列 50
3-1-1基本性質鑑定 50
3-1-1.1 SAXRD繞射圖譜 50
3-1-1.2 WAXRD繞射圖譜 53
3-1-1.3等溫氮氣吸脫附 55
3-1-1.4 SEM影像 61
3-1-1.5 TEM圖像 65
3-1-1.6 XPS結果分析 75
3-1-2鈀催化鈴木偶聯反應實驗 81
3-1-2.1 Pd(x)@CMK-9催化鈴木偶聯反應 81
3-1-2.2 Pd(x)@N-CMK9催化鈴木偶聯反應 83
3-1-2.3不同材料對催化鈴木偶聯反應之比較 84
3-1-2.4不同鹼對催化鈴木偶聯反應之比較 86
3-1-2.5 不同溶劑對催化鈴木偶聯反應之比較 88
3-1-3 Pd(10)@N-CMK9催化鈴木偶聯反應重複利用之實驗 91
3-1-3.1 Pd(10)@N-CMK9 5th回收利用 91
3-1-3.2 Pd(10)@N-CMK9 5th XRD繞射圖譜 92
3-1-3.3 Pd(10)@N-CMK9 5th的TEM圖譜 93
第貳部分 鈀金屬在中孔洞碳氮材催化4-硝基苯酚還原反應 96
3-2-1鈀催化4-硝基苯酚還原反應 96
3-2-2.1 Pd(x)@CMK-9之4-硝基苯酚還原反應催化活性結果比較 99
3-2-2.2 Pd(x)@N-CMK9之4-硝基苯酚還原反應催化活性結果比較 102
3-2-3 Pd(5)@N-CMK9催化4-硝基苯酚還原反應重複利用之實驗 106
3-2-3.1 Pd(5)@N-CMK9 5th XRD繞射圖譜 107
3-2-3.2 Pd(5)@N-CMK9 5th TEM圖 109
第四章 結論 111
第五章 參考文獻 113
1. Everett, D. H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Pure Apple. Chem. 1972, 31, 578-638.
2. Namasivayam, C.; Kavitha, D., Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments 2002, 54 (1), 47-58.
3. Brasquet, C.; Le Cloirec, P., Adsorption onto activated carbon fibers: Application to water and air treatments. Carbon 1997, 35 (9), 1307-1313.
4. Aguado, J.; Arsuaga, J. M.; Arencibia, A.; Lindo, M.; Gascón, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials 2009, 163 (1), 213-221.
5. Li, G.; Zhao, Z.; Liu, J.; Jiang, G., Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. Journal of Hazardous Materials 2011, 192 (1), 277-283.
6. Yan, Z.; Tao, S.; Yin, J.; Li, G., Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs. Journal of Materials Chemistry 2006, 16 (24), 2347-2353.
7. Deere, J.; Magner, E.; Wall, J.; Hodnett, B., Adsorption and activity of cytochrome c on mesoporous silicatesElectronic supplementary information (ESI) available: experimental details. Chemical Communications 2001, (5), 465-465.
8. Yang, Y.-C.; Deka, J. R.; Wu, C.-E.; Tsai, C.-H.; Saikia, D.; Kao, H.-M., Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption. Journal of Materials Science 2017, 52 (11), 6322-6340.
9. Hao, Y.; Chong, Y.; Li, S.; Yang, H., Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols. The Journal of Physical Chemistry C 2012, 116 (11), 6512-6519.
10. Li, M.; Hu, J.; Lu, H., A stable and efficient 3D cobalt-graphene composite catalyst for the hydrolysis of ammonia borane. Catalysis Science & Technology 2016, 6 (19), 7186-7192.
11. Saikia, D.; Huang, Y.-Y.; Wu, C.-E.; Kao, H.-M., Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol. RSC Advances 2016, 6 (42), 35167-35176.
12. Karimian, D.; Yadollahi, B.; Mirkhani, V., Dual functional hybrid-polyoxometalate as a new approach for multidrug delivery. Microporous and Mesoporous Materials 2017, 247, 23-30.
13. Zhou, H.; Zhu, S.; Honma, I.; Seki, K., Methane gas storage in self-ordered mesoporous carbon (CMK-3). Chemical Physics Letters 2004, 396 (4-6), 252-255.
14. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
15. Frank, H.; Maximilian, C.; Jürgen, M.; Michael, F., Silica‐Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
16. Yang, K. N.; Zhang, C. Q.; Wang, W.; Wang, P. C.; Zhou, J. P.; Liang, X. J, pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer biology & medicine 2014, 11(1), 34.
17. Li, W.; Zhao, D., An overview of the synthesis of ordered mesoporous materials. Chemical Communications 2013, 49 (10), 943-946.
18. Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R., MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:  Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. Journal of the American Chemical Society 2005, 127 (20), 7601-7610.
19. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72 (0), 1525-1568.
20. Zhang, J.; Li, X.; Li, X., Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies. Progress in Polymer Science 2012, 37 (8), 1130-1176.
21. D. Fennell Evans, H. W., The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. 1999, Vol. 2nd Edition.
22. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
23. Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B., Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry 2012, 22 (18), 8767-8771.
24. Wang, W.; Yuan, D., Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Scientific reports 2014, 4, 5711.
25. Fang, W.; Zhang, N.; Fan, L.; Sun, K., Preparation of polypyrrole-coated Bi2O3@ CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta 2017, 238, 202-209.
26. Wan, L.; Jiao, J.; Cui, Y.; Guo, J.; Han, N.; Di, D.; Chang, D.; Wang, P.; Jiang, T.; Wang, S., Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanotechnology 2016, 27 (13), 135102.
27. Lamond, T. G.; Marsh, H., The surface properties of carbon—III the process of activation of carbons. Carbon 1964, 1 (3), 293-307.
28. Hu, Z.; Srinivasan, M. P.; Ni, Y., Preparation of Mesoporous High-Surface-Area Activated Carbon. Advanced Materials 2000, 12 (1), 62-65.
29. Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T., Preparation of mesoporous carbon by freeze drying. Carbon 1999, 37 (12), 2049-2055.
30. Pekala, R. W., Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science 1989, 24 (9), 3221-3227.
31. Marsh, H.; Rand, B., The process of activation of carbons by gasification with CO2-II. The role of catalytic impurities. Carbon 1971, 9 (1), 63-77.
32. Tamai, H.; Kakii, T.; Hirota, Y.; Kumamoto, T.; Yasuda, H., Synthesis of Extremely Large Mesoporous Activated Carbon and Its Unique Adsorption for Giant Molecules. Chemistry of Materials 1996, 8 (2), 454-462.
33. Oya, A.; Yoshida, S.; Alcaniz-Monge, J.; Linares-Solano, A., Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon 1995, 33 (8), 1085-1090.
34. Ozaki, J.; Endo, N.; Ohizumi, W.; Igarashi, K.; Nakahara, M.; Oya, A.; Yoshida, S.; Iizuka, T., Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 1997, 35 (7), 1031-1033.
35. Liang, C.; Hong, K.; Guiochon, G. A.; Mays, J. W.; Dai, S., Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers. Angewandte Chemie International Edition 2004, 43 (43), 5785-5789.
36. Liang, C.; Dai, S., Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction. Journal of the American Chemical Society 2006, 128 (16), 5316-5317.
37. Knox, J. H.; Kaur, B.; Millward, G. R., Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A 1986, 352, 3-25.
38. Knox, J. H., Unger, K. K.; Mueller, H. Prospects for Carbon as Packing Material in High-Performance Liquid Chromatography. Journal of Liquid Chromatography 1983, 6 (S1), 1-36.
39. Li, W.-C.; Lu, A.-H.; Weidenthaler, C.; Schüth, F., Hard-Templating Pathway To Create Mesoporous Magnesium Oxide. Chemistry of Materials 2004, 16 (26), 5676-5681.
40. Bonelli, B.; Esposito, S.; Freyria, F. S., Mesoporous Titania: Synthesis, Properties and Comparison with Non-Porous Titania. Titanium Dioxide, 2017, 119-141.
24. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279 (5350), 548.
25. Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gedeon, A., Understanding the Stability in Water of Mesoporous SBA-15 and MCM-41. The Journal of Physical Chemistry C 2007, 111 (23), 8268-8277.
26. Kleitz, F.; Hei Choi, S.; Ryoo, R., Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications 2003, (17), 2136-2137.
27. Almar, L.; Colldeforns, B.; Yedra, L.; Estrade, S.; Peiro, F.; Morata, A.; Andreu, T.; Tarancon, A., High-temperature long-term stable ordered mesoporous Ni-CGO as an anode for solid oxide fuel cells. Journal of Materials Chemistry A 2013, 1 (14), 4531-4538.
28. Ma, X.; Jiang, T.; Han, B.; Zhang, J.; Miao, S.; Ding, K.; An, G.; Xie, Y.; Zhou, Y.; Zhu, A., Palladium nanoparticles in polyethylene glycols: Efficient and recyclable catalyst system for hydrogenation of olefins. Catalysis Communications 2008, 9 (1), 70-74.
29. Wang, D.; Astruc, D., The Golden Age of Transfer Hydrogenation. Chemical Reviews 2015, 115 (13), 6621-6686.
30. Bhuyan, D.; Saikia, L., Scavenging Pd2+ on Amine-Functionalized SBA-15: A Facile Synthesis of Leach-Free Pd0 Nanocatalyst for Base-Free Chemoselective Transfer Hydrogenation of Olefins. ChemistrySelect 2017, 2 (22), 6350-6358.
31. Chen, A.; Li, Y.; Chen, J.; Zhao, G.; Ma, L.; Yu, Y., Selective Hydrogenation of Phenol and Derivatives over Polymer-Functionalized Carbon-Nanofiber-Supported Palladium Using Sodium Formate as the Hydrogen Source. ChemPlusChem 2013, 78 (11), 1370-1378.
32. Vernekar, A. A.; Patil, S.; Bhat, C.; Tilve, S. G., Magnetically recoverable catalytic Co–Co2B nanocomposites for the chemoselective reduction of aromatic nitro compounds. RSC Advances 2013, 3 (32), 13243-13250.
33. Sarmah, P. P.; Dutta, D. K., Chemoselective reduction of a nitro group through transfer hydrogenation catalysed by Ru0-nanoparticles stabilized on modified Montmorillonite clay. Green Chemistry 2012, 14 (4), 1086-1093.
34. Zhang, C.; Leng, Y.; Jiang, P.; Li, J.; Du, S., Immobilizing Palladium Nanoparticles on Nitrogen-Doped Carbon for Promotion of Formic Acid Dehydrogenation and Alkene Hydrogenation. ChemistrySelect 2017, 2 (20), 5469-5474.
35. Harraz, F. A.; El-Hout, S. E.; Killa, H. M.; Ibrahim, I. A., Palladium nanoparticles stabilized by polyethylene glycol: Efficient, recyclable catalyst for hydrogenation of styrene and nitrobenzene. Journal of Catalysis 2012, 286, 184-192.
36. Gong, L.-H.; Cai, Y.-Y.; Li, X.-H.; Zhang, Y.-N.; Su, J.; Chen, J.-S., Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chemistry 2014, 16 (8), 3746-3751.
37. Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F., Electrochemical energy storage in ordered porous carbon materials. Carbon 2005, 43 (6), 1293-1302.
38. Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B., Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry 2012, 22 (18), 8767-8771.
39. Fang, W.; Zhang, N.; Fan, L.; Sun, K., Preparation of polypyrrole-coated Bi2O3@ CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta 2017, 238, 202-209.
40. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.

41. Gu, D.; Schüth, F., Synthesis of non-siliceous mesoporous oxides. Chemical Society Reviews 2014, 43 (1), 313-344.
42. Knox, J. H.; Kaur, B.; Millward, G. R., Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A 1986, 352, 3-25.
43. Kresge, C.; Leonowicz, M.; Roth, W. J.; Vartuli, J.; Beck, J., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710.
44. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica‐based mesoporous organic–inorganic hybrid materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
45. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered mesoporous carbons. 2001.
46. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
47. Kleitz, F.; Choi, S. H.; Ryoo, R., Cubic Ia 3 d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications 2003, (17), 2136-2137.
48. Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F., Electrochemical energy storage in ordered porous carbon materials. Carbon 2005, 43 (6), 1293-1302.
49. Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B., Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry 2012, 22 (18), 8767-8771.
50. Fang, W.; Zhang, N.; Fan, L.; Sun, K., Preparation of polypyrrole-coated Bi2O3@ CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta 2017, 238, 202-209.
51. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
52. Liang, C.; Li, Z.; Dai, S., Mesoporous Carbon Materials: Synthesis and Modification. Angewandte Chemie International Edition 2008, 47 (20), 3696-3717.
53. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered Mesoporous Carbons. Advanced Materials 2001, 13 (9), 677-681.
54. Wang, Y.; Wang, X.; Antonietti, M., Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie International Edition 2012, 51 (1), 68-89.
55. Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z., Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy & Environmental Science 2012, 5 (5), 6717-6731.
56. Zhu, C.; Dong, S., Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 2013, 5 (5), 1753-1767.
57. Portehault, D.; Giordano, C.; Gervais, C.; Senkovska, I.; Kaskel, S.; Sanchez, C.; Antonietti, M., High-Surface-Area Nanoporous Boron Carbon Nitrides for Hydrogen Storage. Advanced Functional Materials 2010, 20 (11), 1827-1833.
58. Lee, J. H.; Ryu, J.; Kim, J. Y.; Nam, S.-W.; Han, J. H.; Lim, T.-H.; Gautam, S.; Chae, K. H.; Yoon, C. W., Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. Journal of Materials Chemistry A 2014, 2 (25), 9490-9495.
59. Deng, Q.-F.; Liu, L.; Lin, X.-Z.; Du, G.; Liu, Y.; Yuan, Z.-Y., Synthesis and CO2 capture properties of mesoporous carbon nitride materials. Chemical Engineering Journal 2012, 203, 63-70.
60. Wei, J.; Zhou, D.; Sun, Z.; Deng, Y.; Xia, Y.; Zhao, D., A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. Advanced Functional Materials 2013, 23 (18), 2322-2328.
61. Xiao, J.; Xie, Y.; Nawaz, F.; Jin, S.; Duan, F.; Li, M.; Cao, H., Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: A potential sunlight/O3/g-C3N4 method for efficient water decontamination. Applied Catalysis B: Environmental 2016, 181, 420-428.
62. Malik, R.; Tomer, V. K.; Dankwort, T.; Mishra, Y. K.; Kienle, L., Cubic mesoporous Pd–WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: highly sensitive and temperature dependent VOC sensors. Journal of Materials Chemistry A 2018, 6 (23), 10718-10730.
63. Wang, Y.; Wang, X.; Antonietti, M.; Zhang, Y., Facile One-Pot Synthesis of Nanoporous Carbon Nitride Solids by Using Soft Templates. ChemSusChem 2010, 3 (4), 435-439.
64. Yan, H., Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chemical Communications 2012, 48 (28), 3430-3432.
65. Vinu, A.; Ariga, K.; Mori, T.; Nakanishi, T.; Hishita, S.; Golberg, D.; Bando, Y., Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Advanced Materials 2005, 17 (13), 1648-1652.
66. Mane, G. P.; Dhawale, D. S.; Anand, C.; Ariga, K.; Ji, Q.; Wahab, M. A.; Mori, T.; Vinu, A., Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A 2013, 1 (8), 2913-2920.
67. Qiu, Y.; Gao, L., Chemical synthesis of turbostratic carbon nitride, containing C–N crystallites, at atmospheric pressure. Chemical Communications 2003, (18), 2378-2379.
68. Guo, Q.; Yang, Q.; Zhu, L.; Yi, C.; Zhang, S.; Xie, Y., A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C3N3)2(NH)3]n. Solid State Communications 2004, 132 (6), 369-374.
69. Kaatz, F. H.; Dai, J. Y.; Markworth, P. R.; Buchholz, D. B.; Chang, R. P. H., Heteroepitaxial oxide structures grown by pulsed organometallic beam epitaxy (POMBE). Journal of Crystal Growth 2003, 247 (3), 509-515.
70. Zimmerman, J. L.; Williams, R.; Khabashesku, V. N.; Margrave, J. L., Synthesis of Spherical Carbon Nitride Nanostructures. Nano Letters 2001, 1 (12), 731-734.

71. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279 (5350), 548.
72. Zhong, L.; Anand, C.; Lakhi, K. S.; Lawrence, G.; Vinu, A., Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction. Scientific Reports 2015, 5, 12901.
73. Vinu, A.; Srinivasu, P.; Sawant, D. P.; Mori, T.; Ariga, K.; Chang, J.-S.; Jhung, S.-H.; Balasubramanian, V. V.; Hwang, Y. K., Three-Dimensional Cage Type Mesoporous CN-Based Hybrid Material with Very High Surface Area and Pore Volume. Chemistry of Materials 2007, 19 (17), 4367-4372.
74. Lakhi, K. S.; Cha, W. S.; Joseph, S.; Wood, B. J.; Aldeyab, S. S.; Lawrence, G.; Choy, J.-H.; Vinu, A., Cage type mesoporous carbon nitride with large mesopores for CO2 capture. Catalysis Today 2015, 243, 209-217.
75. Jin, X.; Balasubramanian, V. V.; Selvan, S. T.; Sawant, D. P.; Chari, M. A.; Lu, G. Q.; Vinu, A., Highly Ordered Mesoporous Carbon Nitride Nanoparticles with High Nitrogen Content: A Metal-Free Basic Catalyst. Angewandte Chemie International Edition 2009, 48 (42), 7884-7887.
76. Talapaneni, S. N.; Mane, G. P.; Mano, A.; Anand, C.; Dhawale, D. S.; Mori, T.; Vinu, A., Synthesis of Nitrogen-Rich Mesoporous Carbon Nitride with Tunable Pores, Band Gaps and Nitrogen Content from a Single Aminoguanidine Precursor. ChemSusChem 2012, 5 (4), 700-708.
77. Talapaneni, S. N.; Anandan, S.; Mane, G. P.; Anand, C.; Dhawale, D. S.; Varghese, S.; Mano, A.; Mori, T.; Vinu, A., Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution. Journal of Materials Chemistry 2012, 22 (19), 9831-9840.
78. Ma, F.; Zhao, H.; Sun, L.; Li, Q.; Huo, L.; Xia, T.; Gao, S.; Pang, G.; Shi, Z.; Feng, S., A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors. Journal of Materials Chemistry 2012, 22 (27), 13464-13468.
79. Chen, X. Y.; Chen, C.; Zhang, Z. J.; Xie, D. H.; Deng, X.; Liu, J. W., Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. Journal of Power Sources 2013, 230, 50-58.
80. Sun, G.; Ma, L.; Ran, J.; Li, B.; Shen, X.; Tong, H., Templated synthesis and activation of highly nitrogen-doped worm-like carbon composites based on melamine-urea-formaldehyde resins for high performance supercapacitors. Electrochimica Acta 2016, 194, 168-178.
81. YIN, L.; Liebscher, J. Carbon−Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chemical Reviews 2006,107(1), 133-173
82. Johansson Seechurn CC;Kitching MO; Colacot TJ; Snieckus V Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angewandte Chemie 2012, 51(21), 5062-5085
83. Len, Christophe; Bruniaux, Sophie; Delbecq, Frederic; Parmar, Virinder S. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling in Continuous Flow. Catalysts 2017, 7(5), 146
84. Jin Liu; Jufang Hao; Chencheng Hu; Baojiang He; Jiangbo Xi; Junwu Xiao; Shuai Wang, Palladium Nanoparticles Anchored on Amine-Functionalized Silica Nanotubes as a Highly Effective Catalyst. The Journal of Physical Chemistry C 2018, 122(5), 2696-2703
85. Nilesh Narkhede; Bhawna Uttam; Chebrolu Pulla Rao, Calixarene-Assisted Pd Nanoparticles in Organic Transformations:Synthesis, Characterization, and Catalytic Applications in Water for C−C Coupling and for the Reduction of Nitroaromatics and Organic Dyes. ACS Omega 2019, 4(3), 4908-4917
86. Ding, J.; Li, Q.; Zhao, L.; Li, X.; Yue, Q.; Gao, B., A wheat straw cellulose based semi-IPN hydrogel reactor for metal nanoparticles preparation and catalytic reduction of 4-nitrophenol. RSC adv.2017, 7(29), 17599-17611.
87.Haiqing Li;Lina Han;Justin Cooper-White;Il Kim, Palladium nanoparticles decorated carbon nanotubes: facile synthesis and their applications as highly efficient catalysts for the reduction of 4-nitrophenol.Green Chem 2012, 14, 586.
88. Gu, X.; Qi, W.; Xu, X.;Sun, Z.; Zhang, L.; Liu, W.; Pan, X.; Su, D., Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 2014, 6(12), 6609-6616..

89. Bingwa, N.; Meijboom, R., Kinetic evaluation of dendrimer-encapsulated palladium nanoparticles in the 4-nitrophenol reduction reaction. J.Phys.Chem.C 2014,118(34), 19849-19858.
90. Ruiz-Garcia, C., Heras, F., Calvo, L., Alonso-Morales, N., Rodriguez, J. J., & Gilarranz, M. A., N-doped CMK-3 carbons supporting palladium nanoparticles as catalysts for hydrodechlorination. Industrial & Engineering Chemistry Research 2019,58(11), 4355-4363.
91. Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q., Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources. 2013, 243, 431-435.
92. Chatterjee, S., & Bhattacharya, S. K., Size-Dependent Catalytic Activity and Fate of Palladium Nanoparticles in Suzuki–Miyaura Coupling Reactions. ACS omega 2018, 3(10), 12905-12913.
93. Saikia, D.; Huang, Y.-Y.; Wu, C.-E.; Kao, H.-M., Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol. RSC Adv.2016,6(42), 35167-35176.
94. Ai, L.; Jiang, J., Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel. Bioresource technol. 2013, 132, 374-377
95. Sebastián, D., Nieto-Monge, M. J., Pérez-Rodríguez, S., Pastor, E., & Lázaro, M. J., Nitrogen doped ordered mesoporous carbon as support of PtRu nanoparticles for methanol electro-oxidation. Energies 2018, 11(4), 831.

96. Nilesh Narkhede; Bhawna Uttam; Chebrolu Pulla Rao, Calixarene-Assisted Pd Nanoparticles in Organic Transformations: Synthesis, Characterization, and Catalytic Applications in Water for C−C Coupling and for the Reduction of Nitroaromatics and Organic Dyes. ACS Omega 2019, 4, 4908−4917
97. Sujit Chatterjee; Swapan Kumar Bhattacharya, Size-Dependent Catalytic Activity and Fate of Palladium Nanoparticles in Suzuki−Miyaura Coupling Reactions. ACS Omega 2018, 3, 12905−12913
98. Vitthal B. Saptal; Madhuri V. Saptal; Rajendra S. Mane; Takehiko Sasaki; Bhalchandra M. Bhanage, Amine-Functionalized Graphene Oxide-Stabilized Pd Nanoparticles (Pd@APGO): A Novel and Efficient Catalyst for the Suzuki and Carbonylative Suzuki−Miyaura Coupling Reactions. ACS Omega 2019, 4, 643−649
99. Etty N. Kusumawati a; Takehiko Sasaki, Highly active and stable supported Pd catalysts on ionic liquidfunctionalized SBA-15 for Suzuki–Miyaura cross-coupling and transfer hydrogenation reactions. Green Energy and Environment 2019, 4(2), 180-189
100. Zuhui Zhang; Zhiyong Wang, Diatomite-Supported Pd Nanoparticles: An Efficient Catalyst for Heck and Suzuki Reactions. J. Org. Chem. 2006, 71(9), 7485-7487
101. Michael Pittelkow; Kasper Moth-Poulsen; Ulrik Boas; Jørn B. Christensen, Poly(amidoamine)-Dendrimer-Stabilized Pd(0) Nanoparticles as a Catalyst for the Suzuki Reaction. Langmuir 2003, 19, 7682-7684

102. Harish, S.; Mathiyarasu, J.; Phani, K.; Yegnaraman, V., Synthesisof conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction. Catal.Lett. 2009, 128(1-2), 197.
103. Gu, X.; Qi, W.; Xu, X.;Sun, Z.; Zhang, L.; Liu, W.; Pan, X.; Su, D., Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 2014,6(12), 6609-6616.
104. Wang, Z.; Xu, C.; Gao, G.; Li, X., Facile synthesis of well-dispersed Pd–graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. Rsc Adv. 2014, 4(26), 13644-13651
105. Gregor, L., Reilly, A. K., Dickstein, T. A., Mazhar, S., Bram, S., Morgan, D. G., ... & Bronstein, L. M. Facile Synthesis of Magnetically Recoverable Pd and Ru Catalysts for 4-Nitrophenol Reduction: Identifying Key Factors. ACS omega 2018, 3(11), 14717-14725.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top