(44.192.66.171) 您好!臺灣時間:2021/05/18 01:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳世昀
研究生(外文):Shih-Yun Chen
論文名稱:有機共吸附染料的合成與性質探討
指導教授:陳家原
指導教授(外文):Chia-Yuan Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:226
中文關鍵詞:染料敏化太陽能電池有機共吸附染料
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
染料敏化太陽能電池(Dye-sensitized Solar Cells,DSC)是具有高度應用潛力的新世代光伏技術,為拓展其應用性,提高元件的光電轉換效率一直是研發重點;2012年Black dye搭配Y1共敏化元件除了創下新的光電轉換效率紀錄(11.4%),也提供一個好的電池性能改善方法。本研究以Y1為雛型設計合成四個新的有機共吸附染料(Co-Adsorption Dyes;代號分別為CAD-1、CAD-3、CAD-5及CAD-7),以提高實驗室先前研發的釕錯合物染料CYC-37敏化元件效能。CADs系列分子於DMF溶液態的最大吸收波長較Y1紅位移至少34 nm,莫爾吸收係數也皆高於Y1的31000 M-1 cm-1。元件初步測試結果顯示,縮短CYC-37敏化電極於CADs溶液的後敏化浸泡時間以降低分子聚集,CADs的高吸光特性可以有效提高CYC-37敏化元件於波長範圍370 ~ 560 nm的光電轉換效能;相較於單獨使用CYC-37敏化的電池,使用CAD-3後敏化0.5小時可大幅增加元件對470 nm光子的轉換能力達14.4% (相同條件下Y1後敏化電池僅上升4.7%)。在AM 1.5G模擬太陽光照射下,CAD-3後敏化電池的短路電流密度為17.63 mA cm-2,優於CYC-37單一敏化元件以及Y1後敏化電池的表現。本研究不僅可作為後續設計高效能有機共吸附染料的基礎,也為未來後敏化元件製程優化提供明確的指引。
Dye-sensitized solar cells (DSCs) are promising photovoltaic technology. For broadening the applications, increasing the power conversion efficiency (PCE) of devices is important. In 2012, the device co-sensitized with Black dye and Y1 reaching a record-high PCE of 11.4% demonstrated a good approach to improve the PCE. In this research, we design four new co-adsorption organic dyes (coded CAD-1, CAD-3, CAD-5 and CAD-7) based on Y1 to increase the PCE of devices sensitized with CYC-37 (a ruthenium complex we previously developed). Compared with Y1, the absorption maximum (max) of CADs in DMF red-shifts over 34 nm, and the molar absorption coefficient is larger than 31000 M-1 cm-1. The preliminary results of the devices sensitized with CYC-37 and CADs show that CADs exhibiting high light-harvesting capacity can significantly enhance the incident photon-to-current conversion (IPCE) performance in the wavelength range of 370 ~ 560 nm. Compared with the cell based only on CYC-37, the device post-sensitized with CAD-3 for 0.5 hour increases 14.4% of the IPCE efficiency at 470 nm, superior to that of co-sensitizer Y1 (4.7%). Under the illumination of AM 1.5G simulated sunlight, the device post-sensitized with CAD-3 yields the short-circuit current density of 17.63 mA cm-2, higher than that those of CYC-37 based device and Y1 post-treated cell. The new results of this research provide not only the basis for designing efficient co-adsorption dyes, but also the guidelines of optimizing post-sensitization processes.
中文摘要 I
Abstract II
謝誌 III
圖目錄 VI
表目錄 XII
第一章 緒論 1
1-1前言 1
1-2太陽光譜與太陽能電池的光伏參數 1
1-3太陽能電池的發展歷史簡介 4
1-4染料敏化太陽能電池的工作原理 6
1-5染料分子設計相關文獻探討 8
1-5-1有機共吸附染料的分子設計 11
1-5-2含Oligoether單元之染料 30
1-6研究動機 37
第二章 實驗部分 39
2-1實驗藥品 39
2-2中間產物之結構與簡稱 45
2-3合成流程及實驗 52
2-3-2 釕錯合物CYC-37之合成 56
2-3-3 CAD-1之合成 59
2-3-4 CAD-3之合成 67
2-3-5 CAD-5之合成 76
2-3-6 CAD-7之合成 84
2-4 儀器分析與樣品製備 93
2-5 元件組裝與光電轉換效率量測 99
2-5-1 DSCs元件組裝流程 99
2-5-2 DSCs光電轉換效率量測系統 102
第三章 結果與討論 104
3-1 合成相關探討 104
3-1-1 CADs染料接上第二個噻吩的反應途徑 104
3-1-2 CADs最終產物的純化 107
3-2 CADs染料結構鑑定與光物理性質探討 111
3-2-1 CADs染料結構鑑定 111
3-2-2 CADs系列分子與Y1的光物理性質探討 119
3-3 有機共吸附染料與CYC-37的電化學性質與前置軌域位能 123
3-4 有機共吸附染料與CYC-37敏化電池的光伏性能探討 127
第四章 結論 139
參考文獻 141
附錄 148
[1] (a) M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel and A. Hagfeldt, "Dye-sensitized solar cells for efficient power generation under ambient lighting" Nat. Photon. 2017, 11, 372–378; (b) C. Y. Chen, T. Y. Kuo, C. W. Huang, Z. H. Jian, P. T. Hsiao, C. L. Wang, J. C. Lin, C. Y. Chen, C. H. Chen, Y. L. Tung, M. C. Tsai, K. M. Huang, C. M. Chen, C. W. Hsu, Y. C. Chen, Z. Pei, Y. S. Tingare, H. H. Chou, C. Y. Yeh, C. Y. Lin, Y. L. Lee, H. W. Lin, H. F. Meng, P. T. Chou and C. G. Wu, "Thermal and angular dependence of next-generation photovoltaics under indoor lighting" Prog. Photovolt. Res. Appl. 2020, 28, 111−121.
[2] (a) "http: // www. pveducation. org / pvcdrom / appendices / standard -solar- spectra"; (b) "http: // www. laserfbcusworld. com/articles/ 2009 / 05 / photovoltaics– measuring– the- sun. htmL".
[3] "https://www.pveducation.org/pvcdrom/solar-cell-operation/impact-of-both-series-and-shunt-resistance".
[4] E. Becquerel, "Mémoire sur les effets électriques produits sous l'influence des rayons solaires" C. R. Acad. Sci. 1839, 9, 561–567.
[5] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, "Electrolytes in dye-sensitized solar cells" Chem. Rev. 2015, 115, 2136–2173.
[6] M. A. Green, E. D. Dunlop, J. H. Ebinger, M. Yoshita, N. Kopidakis, X. Hao, "Solar cell efficiency tables (version 56)" Prog. Photovolt. Res. Appl. 2020, 28, 629–638.
[7] https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200803.pdf
[8] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: Platinum photocell" Nature 1976, 261, 402–403.
[9] B. Regan and M. Grätzel, "A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films" Nature 1991, 353, 737–740.
[10] J. Wu, Z. Lan, J. Lin, M. Huang and Y. Huang, "Counter electrodes in dye-sensitized solar cells" Chem. Soc. Rev. 2017, 46, 5975–6023.
[11] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, "Dye-sensitized solar cells" Chem. Rev. 2010, 110, 6595–6663.
[12] L. Han, A. Islam, H. Chen, C. Malapaka, B. C. Jeevi, S. Zhang, X. Yang and M. Yanagida, "High-efficiency dye-sensitized solar cell with a novel co-adsorbent" Energy Environ. Sci. 2012, 5, 6057–6060.
[13] J. M. Cole, G. Pepe, O. K. Al Bahri and C. B. Cooper, "Cosensitization in dye-sensitized solar cells" Chem. Rev. 2019, 119, 7279–7327.
[14] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes" Chem. Commun. 2015, 51, 15894–15897.
[15] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, S. M. Zakeeruddin, J. H. Tsai, C. Grätzel, C. G. Wu and M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells" ACS Nano 2009, 3, 3103–3109.
[16] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and P. Wang, "High-efficiency dye-sensitized solar cells: The influence of lithium ions on exciton dissociation, charge recombination, and surface states" ACS Nano 2010, 4, 6032–6038.
[17] S. Yun, Y. Qin, A. R. Uhl, N. Vlachopoulos, M. Yin, D. Li, X. Han and A. Hagfeldt, "New-generation integrated devices based on dye-sensitized and perovskite solar cells" Energy Environ. Sci. 2018, 11, 476–526.
[18] S. P. Singh, M. Chandrasekharam, K. S. V. Gupta, A. Islam, L. Han and G. D. Sharma, "Co-sensitization of amphiphilic ruthenium (II) sensitizer with a metal free organic dye: Improved photovoltaic performance of dye sensitized solar cells" Org. Electron. 2013, 14, 1237–1241.
[19] G. Koyyada, S. Shome, M. Chandrasekharam, G. D. Sharma and S. P. Singh, "High performance dye-sensitized solar cell from a cocktail solution of a ruthenium dye and metal free organic dye" RSC Adv. 2016, 6, 41151–41155.
[20] H. Ozawa, R. Shimizu and H. Arakawa, "Significant improvement in the conversion efficiency of black-dye-based dye-sensitized solar cells by cosensitization with organic dye" RSC Adv. 2012, 2, 3198–3200.
[21] S. Zhang, A. Islam, X. Yang, C. Qin, K. Zhang, Y. Numata, H. Chen and L. Han, "Improvement of spectral response by co-sensitization for high efficiency dye-sensitized solar cells" J. Mater. Chem. A 2013, 1, 4812– 4819.
[22] A. Islam, T. Swetha, M. R. Karim, M. Akhtaruzzaman, L. Han and S. P. Singh, "Tuning of spectral response by co-sensitization in black-dye based dye-sensitized solar cell" Phys. Status Solidi A 2015, 3, 651–656.
[23] D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, "Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells" Nano Lett. 2006, 6, 769–773.
[24] Y. Lu, Q. Liu, J. Luo, B. Wang, T. Feng, X. Zhou, X. Liu and Y. Xie, "Solar cells sensitized with porphyrin dyes containing oligo (ethylene glycol) units: a high efficiency beyond 12%" ChemSusChem 2019, 12, 2802–2809.
[25] N. Shibayama, H. Ozawa, M. Abe, Y. Ooyama and H. Arakawa, "A new cosensitization method using the Lewis acid sites of a TiO2 photoelectrode for dye-sensitized solar cells" Chem. Commun. 2014, 60, 6398–6401.
[26] N. Shibayama, H. Ozawa, Y. Ooyama and H. Arakawa, "Highly efficient cosensitized plastic-substrate dye-sensitized solar cells with black dye and pyridine-anchor organic dye" Bull. Chem. Soc. Jpn. 2015, 88, 366–374.
[27] R. Y. Ogura, S. Nakane, M. Morooka, M. Orihashi, Y. Suzuki and K. Noda, "High-performance dye-sensitized solar cell with a multiple dye system" Appl. Phys. Lett. 2009, 7, 94–97.
[28] H. Ozawa, T. Kuroda, S. Harada and H. Arakawa, "Efficient ruthenium sensitizer with a terpyridine ligand having a hexylthiophene unit for dye-sensitized solar cells: Effects of the substituent position on the solar cell performance" Eur. J. Inorg. Chem. 2014, 2014, 4734–4739.
[29] M. Akhtaruzzaman, A. Islam, M. R. Karim, A. K. M. Hasan and L. Han, "Improving the spectral response of black dye by cosensitization with a simple indoline based dye in dye-sensitized solar cell" J. Chem. 2013, 2013, 1–5.
[30] 劉毓琪,2018,國立中央大學化學研究所碩士學位論文(應用於染料敏化太陽能電池之釕金屬錯合物合成與性質探討)。
[31] 馮祐銘,2019,國立中央大學化學研究所碩士學位論文(新型三吡啶釕錯合物光敏化染料的合成與性質探討)。
[32] S. Hong, M. R. Rohman, J. Jia, Y. Kim, D. Moon, Y. Kim, Y. H. Ko, E. Lee and K. Kim, "Porphyrin boxes: Rationally designed porous organic cages" Angew. Chem. Int. Ed. 2015, 54, 13241–13244.
[33] M. Mondal, V. G. Puranik and N. P. Argade, "Facile synthesis of 1,3,7-trihydroxyxanthone and its regioselective coupling reactions with prenal: simple and efficient access to osajaxanthone and nigrolineaxanthone F" J. Org. Chem. 2006, 71, 4992–4995.
[34] J. Huang, S. Zhang, B. Jiang, Y. Chen, X. Zhang, Z. Fan, D. Yu, Z. Lin, J. Yao and C. Zhan, "Terminal moiety-driven electrical performance of asymmetric small-molecule-based organic solar cells" J. Mater. Chem. A 2016, 4, 15688–15697.
[35] T. I. Ryu, M. Song, M. J. Lee, S. H. Jin, S. Kang, J. Y. Lee, J. K. Lee, C. W. Lee and Y. S. Gao, "Synthesis and photovoltaic properties of novel ruthenium(II) sensitizers for dye-sensitized solar cell applications" Bull. Korean Chem. Soc. 2009, 30, 2329–2337.
[36] T. Hergert, B. Varga, A. Thurner, F. Faigl and B. Matravolgyi, "Copper-facillitated Suzuki-Miyaura coupling for the preparation of 1,3-dioxolane-protected 5-arylthiophene-2-carboxaldehydes" Tetrahedron 2018, 74, 2002–2008.
[37] Y. Jiang, C. Cabanetos, M. Allain, S. Jungsuttiwong and J. Roncali, "Manipulation of the electronic and photovoltaic properties of materials based on small push-pull molecules by substitution of the arylamine donor block by aliphatic groups" Org. Electron. 2016, 37, 294–304.
[38] R. Noto, L. Lamartina, C. Arnone and D. Spinelli, "An analysis of 13C nuclear magnetic resonance substiuent chemical shifts in 4- and 5-substituted thiophene-2-carboxylic acids by linear free energy relationships" J. Chem. Soc. Perkin. Trans. II 1988, 6, 887–892.
[39] R. Heathcote, J. A. S. Howell, N. Jennings, D. Cartlidge, L. Cobden, S. Coles and M. Hursthouse, "Gold(I)-isocyanide and gold(I)-carbene complexes as substrates for the laser decoration of gold onto ceramic surfaces" Dalton Trans. 2007, 13, 1309–1315.
[40] A. Bedi, S. P. Senanayak, K. S. Narayan and S. S. Zade, "Synthesis and characterization of copolymers based on cyclopenta[c]thiophene and bithiazole and their transistor properties" J. Polym. Sci. A Polym. Chem. 2013, 57, 4481–4488.
[41] S. H. Yang, K. L. Wu, Y. Chi, Y. M. Cheng and P. T. Chou, "Tris (thiocyanate) ruthenium (II) sensitizers with functionalized dicarboxy-terpyridine for dye-sensitized solar cells" Angew. Chem. Int. Ed. 2011, 50, 8270–8274.
[42] S. C. Rasmussen, S. J. Evenson and C. B. McCausland, "Fluorescent thiophene-based materials and their outlook for emissive applications" Chem. Commun. 2015, 51, 4528–4543.
[43] W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z. Wang and H. Tian, "Organic D-A-π-A solar cell sensitizers with improved stability and spectral response" Adv. Funct. Mater. 2011, 21, 756–763.
[44] C. H. Chen, Y. C. Hsu, H. H. Chou, K. R. Thomas, J. T. Lin and C. P. Hsu, "Dipolar compounds containing fluorene and a heteroaromatic ring as the conjugating bridge for high-performance dye-sensitized solar cells" Chem. Eur. J. 2010, 16, 3184–3193.
[45] V. V. Pavlishchuk and A. W. Addison, "Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25 oC" Inorg. Chim. Acta. 2000, 298, 97–102.
[46] H. Ozawa, K. Fukushima. A. Urayama and H. Arakawa, "Efficient ruthenium sensitizer with an extended pi-conjugated terpyridine ligand for dye-sensitized solar cells" Inorg. Chem. 2015, 54, 8887–8889.
[47] C. Y. Chen, S. K. Ahn, D. Aoki, J. Kokubo, K. H. Yoon, H. Saito, K. S. Lee, S. Magaino, K. Takagi, L. C. Lin, K. M. Lee, C. G. Wu, H. Zhou and S. Igari, "International round-robin inter-comparison of dye-sensitized and crystalline silicon solar cells" J. Power Source 2017, 340, 309–318.
[48] H. Chang, M. J. Kao, T. L. Chen, C. H. Chen, K. C. Cho and X. R. Lai, "Characterization of natural dyes extracted from wormwood and purple cabbage for dye-sensitized solar cells" Int. J. Photoenergy 2013, 2013, 1–8.
[49] D. Kuang, P. Walter, F. Nuesch, S. Kim, J. Ko, P. Comte, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Grätzel, "Co-sensitization of organic dyes for efficient ionic liquid elctrolyte-based dye-sensitized solar cells" Langmuir 2007, 23, 10906–10909.
電子全文 電子全文(網際網路公開日期:20250818)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top