(3.236.214.19) 您好!臺灣時間:2021/05/10 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐峻彥
研究生(外文):Chun-Yen Hsu
論文名稱:理論與數值模擬研究次磁音速的寬頻Kelvin-Helmholtz不穩定波動成長率與非線性發展過程
論文名稱(外文):Theoretical and Simulation Study of the Growth Rates and the Nonlinear Evolutions of the Submagnetosonic Broadband Kelvin-Helmholtz Instabilities
指導教授:呂凌霄
指導教授(外文):Ling-Hsiao Lyu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:太空科學與工程研究所
學門:自然科學學門
學類:天文及太空科學學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:91
中文關鍵詞:電漿數值模擬速度切不穩定
外文關鍵詞:Kelvin-Helmholtz instabilityplasma physics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
速度切不穩定又稱作Kelvin-Helmholtz (K-H) 不穩定是自然界一種常見的流體能量與動量交換過程。自然界中所觀測到的K-H不穩定,擾動層厚度會不斷增加,但是早期理論研究卻假設擾動層的厚度是固定不變的,因此可以找到一個成長率最高的擾動波波長,此波長的波被視為該速度切條件下的最不穩定波。較新的理論研究(張益偉, 2016) 發現,給定速度切大小與擾動波的波長,隨著擾動層厚度增加,不穩定波的成長率也會隨之增加,直到達到該波長的最大擾動層厚度。最大擾動層厚度會隨著波長增加而增厚。本論文利用高階的二維磁流體數值模擬碼,模擬研究磁流體電漿中快波馬赫數小於1的K-H不穩定事件。我們成功找到了一種初始條件讓模擬結果可以驗證張益偉 (2016) 的理論解。我們比較數值模擬結果與理論解發現:K-H不穩定過程中的最不穩定波,並不見得是系統中最主要的擾動波。因為最不穩定波的有效擾動擾動層厚度比較薄,所以達到飽和的時間通常早於較長的擾動波。反之,較長擾動波的有效擾動層厚度比較厚,所以可以從背景電漿流中獲得較多的能量,故達到飽和的時間晚,且振幅較大。因此系統中的擾動波會往長波發展,使得擾動層厚度不斷增加。我們的模擬結果與理論解相比,在振幅與相位的空間分佈上都相當一致,但是模擬中的耗散項使得振幅的成長率略低於理論值。
Velocity shear instability, which is also called the Kelvin-Helmholtz (K-H) instability, provides an efficient mechanism for energy exchange and momentum exchange of different flows in nature. The thickness of the surface perturbation usually increases with time in the observed K-H instability in the natural environment. However, in early theoretical studies of K-H instability, the surface perturbation was assumed to be confined in a boundary layer. The halfwidth of the boundary layer is less than ten times the initial thickness of the velocity shear layer. As a result, one could always find a wave of a particular wavelength that has the highest growth rate in the confined boundary layer. This wave was considered to be the most unstable mode in the system. Recently, the theoretical study by Chang (2016) showed that the location of the maximum perturbation boundary varies with the tangential wavelength of the surface wave. The submagnetosonic K-H instabilities in a magnetohydrodynamic (MHD) plasma are studied by a higher-order two-dimensional MHD simulation in this thesis. We successfully find one type of initial conditions which allow broadband surface disturbances to grow simultaneously. As a result, our simulation results can verify the theoretical solutions obtained by Chang (2016). We analysis the amplitude distributions and the phase distributions of the broadband waves generated by the K-H instability and find the simulation results are in good agreement with the theoretical solutions. However, the growth rates obtained in our simulation are less than the corresponding growth rates found in the theoretical solutions due to the additional dissipation terms added in our simulation model. Our simulation results also show that the most unstable mode in the K-H instability will be the dominant mode only during the initial phase of the K-H instability. When the perturbed boundary grows beyond the outermost edge of the most unstable mode, the growth rate of the most unstable mode begins to decrease. Whereas, waves with longer wavelengths have a more extended outermost boundary for them to grow linearly. These waves can receive more energy from the flow field and continuously grow to higher amplitudes. Thus, these waves with longer wavelengths eventually become the dominant modes in the late phase of the K-H instability.
中文摘要 ……………………………………………………... i
英文摘要 ……………………………………………………... ii
致謝 ……………………………………………………... iv
目錄 ……………………………………………………... v
圖目錄 ……………………………………………………... vii
表目錄 ……………………………………………………... x
符號說明 ……………………………………………………... xi
一、 簡介 ………………………………………………... 1
二、 基本方程 式………………………………………... 3
2-1 基本方程式介紹…………………………………... 3
2-2 歸一化的處理……………………………………... 4
三、 平衡態結構 ………………………………………... 6
四、 數值方法 …………………………………………... 10
4-1 高階積分法 ………………………………………... 10
4-2 高階微分法 ………………………………………... 11
4-3 耗散項………………………………………........... 11
五、 K-H不穩定成長率理論分析…………………….. 13
5-1 表面波的線性頻散關係式……………………….. 13
5-2 K-H不穩定成長率理論解……………………….. 20
六、 模擬邊界條件、初始條件、與參數設定……….. 25
6-1 邊界條件 ………………………………………….. 25
6-2 初始擾動的選擇 ………………………………….. 25
6-3 模擬參數 ………………………………………….. 28
七、 模擬結果與分析 ………………………………….. 29
7-1 數值模擬的結果 ………………………………….. 29
7-2 模擬結果的分析 ………………………………….. 34
7-2-1 表面波波速………………………………………………… 34
7-2-2 擾動波分析………………………………………………… 36
7-2-3 理論解的不穩定波成長率………………………………… 47
7-3 比較數值模擬與理論解的結果…………………... 51
7-4 非線性飽和………………………………………... 58
八、 總結與討論………………………………………... 59
參考文獻 …………………………………………………….. 62
Appendix A 週期性初始擾動的模擬結果…………………….. 65
Archer, M. O., Hietala, H., Hartinger, M. D., Plaschke, F., & Angelopoulos, V. (2019). Direct observations of a surface eigenmode of the dayside magnetopause. Nature Communication, 10(1), 615. doi:10.1038/s41467‐018‐08134‐5
Belcher, J. W., and L. Davis (1971), Large‐amplitude Alfvén waves in the interplanetary medium, 2, J. Geophys. Res., 76(16), 3534–3563, doi:10.1029/JA076i016p03534.
Blumen, W. (1970), Shear layer instability of an inviscid compressible fluid, J. Fluid Mech., 40, 769.
Blumen, W., P. G. Drazin, and D. F. Billings (1975), Shear layer instability of an inviscid compressible fluid. Part 2, J. Fluid Mech., 71, 305.
Chandrasekhar, S. (1961), Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press, New York.
Chao, J. K. (1970), Interplanetary Collisionless Shock Waves, Rep. CSR TR-70-3, MIT Center for Space Research, Cambridge, Mass..
Chen, S. H., and M. G. Kivelson (1993), On nonsinusoidal waves at the Earth's magnetopause, Geophys. Res. Lett., 20, 2699.
Fornberg, B. (1988), Generation of finite differences formulas on arbitrary spaced grids, Mathematics of Computation, 51, 699-706.
Hasegawa, H., et al. (2004), Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices, Nature, 430, p. 755, doi:10.1038/nature02799.
Hasegawa, H., M. Fujimoto, K. Takagi, Y. Saito, T. Mukai, and H. Rème (2006), Single‐spacecraft detection of rolled‐up Kelvin‐Helmholtz vortices at the flank magnetopause, J. Geophys. Res., 111, A09203, doi:10.1029/2006JA011728.
Hasegawa, H., et al. (2009), Kelvin-Helmholtz waves at the Earth’s magnetopause: Multiscale development and associated reconnection, J. Geophys. Res., 114, A12207, doi:10.1029/2009JA014042.
Hildebrand, F. B. (1976), Advanced Calculus for Applications, "2" ^nd edition, Prentice-Hall, Inc., Englewood, Cliffs, New Jersey.
Kantrowitz, A., and H. E. Petschek (1966), MHD characteristics and shock waves, in Plasma Physics in Theory and Application, edited by W. B. Kunkel, p. 148, McGraw-Hill Inc., New York.
Lai, S. H., and L. H. Lyu (2006), Nonlinear evolution of the MHD Kelvin-Helmholtz instability in a compressible plasma, J. Geophys. Res., 111, A01202, doi:10.1029/2004JA010724.
Lai, S. H., and L. H. Lyu (2008), Nonlinear evolution of the jet-flow-associated Kelvin-Helmholtz instability in MHD plasmas and the formation of Mach-cone-like plane waves, J. Geophys. Res., 113, A06217, doi:10.1029/2007JA012790.
Lyu, L. H. (2010), Nonlinear Space Plasma Physics (I) Lecture Notes, http://www.ss.ncu.edu.tw/~lyu/lecture_files_en/lyu_NLSPP_Notes/lyu_NLSPP_Con tent.html
Masters, A., Achilleos, N., Kivelson, M. G., Sergis, N., Dougherty, M. K., Thomsen, M. F., Arridge, C. S., Krimigis, S. M., McAndrews, H. J., Kanani, S. J., Krupp, N., & Coates, A. J. (2010). Cassini observations of a Kelvin‐Helmholtz vortex in Saturn's outer magnetosphere. Journal of Geophysical Research, 115, A07225. doi.10.1029/2010JA015351.
Miura, A. (1982), Nonlinear evolution of the magnetohydrodynamic Kelvin-Helmholtz instability, Phys. Rev. Lett., 49, No. 11, pp. 779-782.
Miura, A. (1992), Kelvin-Helmholtz instability at the magnetospheric boundary - Dependence on the magnetosheath sonic Mach number, J. Geophys. Res., 97, A7, pp. 10,655-10,675.
Miura, A., and P. L. Pritchett (1982), Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma, J. Geophys. Res., 87, 7431.
Ofman, L., and B. J. Thompson (2011), SDO/AIA Observation of Kelvin-Helmholtz Instability in the Solar Corona, ApJL, 734, L11, doi: 10.1088/2041-8205/734/1/L11
Otto, A., and D. H. Fairfield (2000), Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations, J. Geophys. Res., 105, 21,175.
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1988), Numerical Recipes, Cambridge University Press, Cambridge.
Shampine, L. F., I. Gladwell, and S. Thompson (2003), Solving ODEs with MATLAB, Cambridge University Press, Cambridge.
張益偉 (2016), 擾動層厚度對Kelvin-Helmholtz不穩定之成長率隨波長分佈的影響,國立中央大學太空科學研究所,碩士論文。
電子全文 電子全文(網際網路公開日期:20210528)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔