(18.206.238.77) 您好!臺灣時間:2021/05/17 18:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許仁愷
研究生(外文):Jen-Kai Hsu
論文名稱:泰坦的多儀器研究:甲烷的大氣逸散率估算 和泰坦的“平均”電離層模型
論文名稱(外文):Multi-instrument studies of Titan: Estimates of the Atmospheric Escape Rates of CH4 and the \"Average\" Ionospheric Model
指導教授:葉永烜
指導教授(外文):Wing-Huen Ip
學位類別:博士
校院名稱:國立中央大學
系所名稱:太空科學與工程研究所
學門:自然科學學門
學類:天文及太空科學學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:171
中文關鍵詞:TitanCassiniatmosphereionosphereexosphere
外文關鍵詞:土衛六卡西尼號大氣層電離層外氣層
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這份研究主要使用卡西尼號太空船的觀測資料來研究土星的最大衛星,泰坦,的大氣層和電離層。卡西尼號搭載的離子及中性粒子質譜儀可以提供電子和中性粒子的密度資料;卡西尼電漿分光計可以提供正電子的密度資料;無線電和電漿波科學可以提供三維的電子密度和電子溫度;磁強計可以提供飛掠發生時的磁場資料。

第一個研究主題是對泰坦熱氣層和外氣層溫度變化的統計研究。卡西尼太空船上的儀器在進行飛掠觀測時,發現了熱氣層和外氣層溫度變化劇烈的特徵。我們使用了雙馬克士威爾近似檢查了質譜儀所量測的大氣密度剖面並且研究泰坦大氣溫度的全球變化。在過程中,有些飛掠的案例顯示出一個較冷的大氣層覆蓋在較熱的高層大氣之上。在這項研究中,我們回顧了卡西尼所量測的一系列氮氣和甲烷的密度分佈。包括與氮氣和甲烷的溫度變化的比較,以及突發事件和等離子體環境之間的統計相關性。

在第二個研究主題中,我們將分析從卡西尼號過去十年間從泰坦飛掠中所獲得的大量數據。本研究試圖通過使用太陽天頂角依賴性的簡單近似來生成不同離子物種的平均三維離子密度分佈。這種方式可以對泰坦電離層的全球特性進行全面的可視化,可作為將來執行泰坦任務的工程模型。此外,我們將討論太陽週期以及泰坦大氣層與土星磁層之間相互作用引起的泰坦電離層結構的不對稱性。
The work in this thesis use a multi-instruments data from the Cassini spacecraft to study the atmosphere and ionosphere of Saturn’s largest moon Titan. The Ion and Neutral Mass Spectrometer (INMS) provided the ion and neutral number density distributions, the Ion Beam Spectrometer (IBS) of the Cassini Plasma Spectrometer (CAPS) experiment provided positive ion density profiles, and the Radio and Plasma Wave Science (RWPS) instrument provided information on the 3D distributions of electron density and electron temperature. In addition, the Cassini magnetometer (MAG) probed the magnetic region when these targeted flybys happened. Two subjects are included in this thesis.

The first subject is a statistical study of variations in Titan's thermospheric and exospheric temperature. The upper atmosphere of Titan is highly variable as characterized by the variations of the thermospheric and exospheric temperatures from in-situ measurements by Cassini at different Titan encounters. In the context of a bi-Maxwellian approximation, we examined the atmospheric density profiles obtained by the INMS experiment on Cassini and formed a global change of Titan’s atmospheric temperature at relatively short timescales. Some cases showed a cold exosphere overlying a hotter upper atmosphere during the transition. In this study, we review a series of measurements of N2 and CH4 density profiles. A comparison with the temperature variations of N2 and CH4, and statistical correlations between episodic events and plasma environments are included.

In the second part, we analyze the acquired extensive data set from the decadal coverage of the Cassini measurements during the Titan encounters. A statistical study of the spatial variations of Titan’s ionospheric composition has been performed. An attempt is made in this study to generate average 3D ion density distributions for different ion species by using a simple approximation of the solar zenith angle dependence. This empirical approach allows a comprehensive visualization of the global properties of Titan's ionosphere that could be useful as engineering models for future missions to Titan. Moreover, we will discuss the asymmetry in the Titan’s ionospheric structure caused by of interaction between Titan’s atmosphere with the Saturnian magnetosphere.
Contents
Abstract i
摘要 iii
致謝 iv
List of Figures viii
List of Tables xvii
Chapter 1 1
Introduction 1
1.1 Instrumentation 3
1.2.1 Ion and Neutral Mass Spectrometer (INMS) 7
1.1.2 The Cassini Plasma Spectrometer (CAPS) 10
1.1.3 Cassini RPWS Langmuir Probe (RPWS/LP) 12
1.1.4 Cassini Fluxgate Magnetometer (MAG) 13
1.2 Data treatment and multi-instrument study 14
1.3 Physical Property 16
Chapter 2 21
Titan 21
2.1 Titan’s neutral atmosphere 21
2.1.1 Atmospheric Composition 22
2.1.2 Vertical Structure 26
2.1.3 The Variability of Titan atmosphere 28
2.2 Titan’s ionosphere 33
2.2.1 Sources 34
2.2.2 Structure 35
2.2.3 Composition 39
2.2.4 Chemistry 42
CHAPTER3 45
The Atmospheric Escape Rates 45
3.1Atmospheric escape 45
3.2 Thermal escape 46
3.2.1 Jeans escape 46
3.2.2 Hydrodynamic escape 47
3.3 Non-thermal (suprathermal) escape 47
3.3.1 Photochemical escape 48
3.3.2 Charge exchange 48
3.3.3 Pickup and sputter escape 48
3.3.4 Photochemical escape of planetary atmospheres 49
3.4 Impact erosion 49
3.5 Atmospheric Loss of Titan 50
CHAPTER 4 53
Estimates of the Atmospheric Escape Rates of CH4 from Titan 53
4.1 Atmospheric Escape Rates of CH4 53
4.2 Exospheric Structures of N2 and CH4 54
4.3 Time-Dependent Variation of CH4 Escape Rates 59
4.4 Magnetospheric and Photochemical Effects of the CH4 escape rate 64
4.5 Summary 70
CHAPTER 5 71
A statistical study of Titan's upper atmospheric and ionospheric composition and distributions 71
5.1 Introduction 71
5.2 Data Treatment of INMS 76
5.3 Comparison with different ion mass groups from CAPS 99
5.4 Solar cycle effect and plasma environment interaction in Titan’s ionosphere 106
5.5 Summary 115
CHAPTER 6 118
Conclusions and Discussions 118
Appendix 123
A.1 Best-fit results of different ion masses of the INMS measurements 123
A.2 Best-fit results of different mass groups of the CAPS-IBS measurements 127
A.3 Best-fit results of the INMS measurements at different solar conditions 130
A.4 Best-fit results of the INMS measurements at different solar conditions and plasma environments 131
A4.1 Solar maximum 131
A4.2 Solar minimum 133
Bibliography 134
Bibliography
Ågren, K., Andrews, D. J., Buchert, S. C., Coates, A. J., Cowley, S. W. H., Dougherty, M. K., Edberg, N. J. T., Garnier, P., Lewis, G. R., Modolo, R., Opgenoorth, H., Provan, G., Rosenqvist, L., Talboys, D. L., Wahlund, J.-E., &Wellbrock, A. (2011). Detection of currents and associated electric fields in Titan’s ionosphere from Cassini data. Journal of Geophysical Research (Space Physics), 116(A4), A04313. https://doi.org/10.1029/2010JA016100
Ågren, K., Wahlund, J.-E., Modolo, R., Lummerzheim, D., Galand, M., Müller-Wodarg, I., Canu, P., Kurth, W. S., Cravens, T. E., Yelle, R. V., Waite J. H., J., Coates, A. J., Lewis, G. R., Young, D. T., Bertucci, C., &Dougherty, M. K. (2007). On magnetospheric electron impact ionisation and dynamics in Titan’s ram-side and polar ionosphere - a Cassini case study. Annales Geophysicae, 25(11), 2359–2369. https://doi.org/10.5194/angeo-25-2359-2007
Ågren, K., Wahlund, J. E., Garnier, P., Modolo, R., Cui, J., Galand, M., &Müller-Wodarg, I. (2009). On the ionospheric structure of Titan. In Planetary and Space Science (Vol. 57, Issues 14–15, pp. 1821–1827). https://doi.org/10.1016/j.pss.2009.04.012
Ahrens, T. J. (1993). Impact erosion of terrestrial planetary atmospheres. Annual Review of Earth & Planetary Sciences, 21, 525–555. https://doi.org/10.1146/annurev.ea.21.050193.002521
Alibert, Y., &Mousis, O. (2007). Formation of Titan in Saturn ’ s subnebula : constraints. 1060, 1051–1060.
Anicich, V. G., &McEwan, M. J. (1997). Ion-molecule chemistry in Titan’s ionosphere. lanss, 45(8), 897–921. https://doi.org/10.1016/S0032-0633(97)00053-6
Arridge, C. S., André, N., McAndrews, H. J., Bunce, E. J., Burger, M. H., Hansen, K. C., Hsu, H. W., Johnson, R. E., Jones, G. H., Kempf, S., Khurana, K. K., Krupp, N., Kurth, W. S., Leisner, J. S., Paranicas, C., Roussos, E., Russell, C. T., Schippers, P., Sittler, E. C., …Dougherty, M. K. (2011). Mapping magnetospheric equatorial regions at Saturn from Cassini prime mission observations. In Space Science Reviews (Vol. 164, Issues 1–4). https://doi.org/10.1007/s11214-011-9850-4
Atreya, S. K., Donahue, T. M., &Kuhn, W. R. (1978). Evolution of a Nitrogen Atmosphere on Titan. Science, 201(4356), 611–613. https://doi.org/10.1126/science.201.4356.611
Atreya, Sushil K, Adams, E. Y., Niemann, H. B., Demick-Montelara, J. E., Owen, T. C., Fulchignoni, M., Ferri, F., &Wilson, E. H. (2006). Titan’s methane cycle. Planetary and Space Science, 54(12), 1177–1187. https://doi.org/https://doi.org/10.1016/j.pss.2006.05.028
Bell, J. M., Bougher, S. W., Waite, J. H., Ridley, A. J., Magee, B. A., Mandt, K. E., Westlake, J., DeJong, A. D., Bar-Nun, A., Jacovi, R., Toth, G., &DeLa Haye, V. (2010). Simulating the one-dimensional structure of Titan’s upper atmosphere: 1. Formulation of the Titan Global Ionosphere-Thermosphere Model and benchmark simulations. Journal of Geophysical Research E: Planets, 115(12), 1–20. https://doi.org/10.1029/2010JE003636
Bell, J. M., Hunter Waite, J., Westlake, J. H., Bougher, S. W., Ridley, A. J., Perryman, R., &Mandt, K. (2014). Developing a self-consistent description of Titan’s upper atmosphere without hydrodynamic escape. Journal of Geophysical Research: Space Physics, 119(6), 4957–4972. https://doi.org/10.1002/2014JA019781
Bird, M. K., Dutta-Roy, R., Asmar, S. W., &Rebold, T. A. (1997). Detection of Titan’s Ionosphere from Voyager 1 Radio Occultation Observations. Icarus, 130(2), 426–436. https://doi.org/https://doi.org/10.1006/icar.1997.5831
Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., Holberg, J. B., Smith, G. R., Strobel, D. F., McConnell, J. C., Kumar, S., Hunten, D. M., Atreya, S. K., Donahue, T. M., Moos, H. W., Bertaux, J. L., Blamont, J. E., Pomphrey, R. B., &Linick, S. (1981). Extreme ultraviolet observations from voyager 1 encounter with Saturn. Science, 212(4491), 206–211. https://doi.org/10.1126/science.212.4491.206
Brown, R. H., Lebreton, J.-P., &Waite, J. H. (2010). Titan from Cassini-Huygens. https://doi.org/10.1007/978-1-4020-9215-2
Burton, M. E., Buratti, B., Matson, D. L., &Lebreton, J. (2001). Saturn Arrival \ l. 106, 99–107.
Capalbo, F. J., Bénilan, Y., Yelle, R.V, Koskinen, T. T., Sandel, B. R., Holsclaw, G. M., &McClintock, W. E. (2013). Solar Occultation by Titan Measured by Cassini/UVIS. \apjl, 766(2), L16. https://doi.org/10.1088/2041-8205/766/2/L16
Catling, D. C., &Zahnle, K. J. (2009). The Planetary Air Leak. Scientific American, 300(5), 36–43. https://doi.org/10.1038/scientificamerican0509-36
Coates, A. J., Wellbrock, A., Lewis, G. R., Jones, G. H., Young, D. T., Crary, F. J., &Waite, J. H. (2009). Heavy negative ions in Titan’s ionosphere: Altitude and latitude dependence. lanss, 57(14–15), 1866–1871. https://doi.org/10.1016/j.pss.2009.05.009
Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., Waite, J. H., &Sittler, J. C. (2007). Discovery of heavy negative ions in Titan’s ionosphere. Geophysical Research Letters, 34(22), 6–11. https://doi.org/10.1029/2007GL030978
Coates, A. J., Wellbrock, A., Lewis, G. R., Jones, G. H., Young, D. T., Crary, F. J., Waite, J. H., Johnson, R. E., Hill, T. W., &Sittler, E. C. (2010). Negative ions at Titan and Enceladus: Recent results. Faraday Discussions, 147, 293–305. https://doi.org/10.1039/c004700g
Coustenis, A., Achterberg, R. K., Conrath, B. J., Jennings, D. E., Marten, A., Gautier, D., Nixon, C. A., Flasar, F. M., Teanby, N. A., Bézard, B., Samuelson, R. E., Carlson, R. C., Lellouch, E., Bjoraker, G. L., Romani, P. N., Taylor, F. W., Irwin, P. G. J., Fouchet, T., Hubert, A., …Courtin, R. (2007). The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. Icarus, 189(1), 35–62. https://doi.org/10.1016/j.icarus.2006.12.022
Crary, F. J., Magee, B. A., Mandt, K., Waite, J. H., Westlake, J., &Young, D. T. (2009). Heavy ions, temperatures and winds in Titan’s ionosphere: Combined Cassini CAPS and INMS observations. Planetary and Space Science, 57(14–15), 1847–1856. https://doi.org/10.1016/j.pss.2009.09.006
Cravens, T. E., Clark, J., &Ledvina, S. (2004). Interaction of the Saturn magnetosphere with the Titan upper atmosphere and ionosphere. 35th COSPAR Scientific Assembly, 35, 791.
Cravens, T. E., Keller, C. N., &Ray, B. (1997). Photochemical sources of non-thermal neutrals for the exosphere of Titan. Planetary and Space Science, 45(8), 889–896. https://doi.org/10.1016/s0032-0633(97)00064-0
Cravens, T. E., Lindgren, C. J., &Ledvina, S. A. (1998). A two-dimensional multifluid MHD model of Titan’s plasma environment. Planetary and Space Science, 46(9–10), 1193–1205. https://doi.org/10.1016/s0032-0633(98)00051-8
Cravens, T. E., Robertson, I. P., Waite, J. H., Yelle, R.V., Vuitton, V., Coates, A. J., Wahlund, J. E., Agren, K., Richard, M. S., DeLa Haye, V., Wellbrock, A., &Neubauer, F. M. (2009a). Model-data comparisons for Titan’s nightside ionosphere. Icarus, 199(1), 174–188. https://doi.org/10.1016/j.icarus.2008.09.005
Cravens, T. E., Robertson, I. P., Waite, J. H., Yelle, R.V., Vuitton, V., Coates, A. J., Wahlund, J. E., Agren, K., Richard, M. S., DeLa Haye, V., Wellbrock, A., &Neubauer, F. M. (2009b). Model-data comparisons for Titan’s nightside ionosphere. Icarus, 199(1), 174–188. https://doi.org/10.1016/j.icarus.2008.09.005
Cravens, T. E., Robertson, I. P., Waite Jr., J. H., Yelle, R.V, Kasprzak, W. T., Keller, C. N., Ledvina, S. A., Niemann, H. B., Luhmann, J. G., McNutt, R. L., Ip, W.-H., DeLa Haye, V., Mueller-Wodarg, I., Wahlund, J.-E., Anicich, V. G., &Vuitton, V. (2006). Composition of Titan’s ionosphere. Geophysical Research Letters, 33(7). https://doi.org/10.1029/2005GL025575
Cui, J., Galand, M., Yelle, R.V., Vuitton, V., Wahlund, J. E., Lawas, P. P., Müller-Wodarg, I. C. F., Cravens, T. E., Kasprzak, W. T., &Waite, J. H. (2009). Diurnal variations of Titan’s ionosphere. Journal of Geophysical Research: Space Physics, 114(6), 1–20. https://doi.org/10.1029/2009JA014228
Cui, J., Galand, M., Yelle, R.V., Wahlund, J. E., Agren, K., Waite, J. H., &Dougherty, M. K. (2010). Ion transport in Titan’s upper atmosphere. Journal of Geophysical Research: Space Physics, 115(6), 1–12. https://doi.org/10.1029/2009JA014563
Cui, J., Yelle, R.V., Strobel, D. F., Mller-Wodarg, I. C. F., Snowden, D. S., Koskinen, T. T., &Galand, M. (2012). The CH4 structure in Titan’s upper atmosphere revisited. Journal of Geophysical Research E: Planets, 117(11), 1–16. https://doi.org/10.1029/2012JE004222
Cui, J., Yelle, R.V., &Volk, K. (2008). Distribution and escape of molecular hydrogen in Titan’s thermosphere and exosphere. Journal of Geophysical Research E: Planets, 113(10), 1–16. https://doi.org/10.1029/2007JE003032
Dandouras, I., Garnier, P., Mitchell, D. G., Roelof, E. C., Brandt, P. C., Krupp, N., &Krimigis, S. M. (2009). Titan’s exosphere and its interaction with Saturn’s magnetosphere. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1889), 743–752. https://doi.org/10.1098/rsta.2008.0249
DeLa Haye, V., Waite, J. H., Cravens, T. E., Robertson, I. P., &Lebonnois, S. (2008). Coupled ion and neutral rotating model of Titan’s upper atmosphere. \icarus, 197(1), 110–136. https://doi.org/10.1016/j.icarus.2008.03.022
DeLa Haye, V., Waite, J. H., Johnson, R. E., Yelle, R.V., Cravens, T. E., Luhmann, J. G., Kasprzak, W. T., Gell, D. A., Magee, B., Leblanc, F., Michael, M., Jurac, S., &Robertson, I. P. (2007a). Cassini Ion and Neutral Mass Spectrometer data in Titan’s upper atmosphere and exosphere: Observation of a suprathermal corona. Journal of Geophysical Research: Space Physics, 112(7), 236–250. https://doi.org/10.1029/2006JA012222
DeLa Haye, V., Waite, J. H., Johnson, R. E., Yelle, R.V., Cravens, T. E., Luhmann, J. G., Kasprzak, W. T., Gell, D. A., Magee, B., Leblanc, F., Michael, M., Jurac, S., &Robertson, I. P. (2007b). Cassini Ion and Neutral Mass Spectrometer data in Titan’s upper atmosphere and exosphere: Observation of a suprathermal corona. Journal of Geophysical Research: Space Physics, 112(7), 1–16. https://doi.org/10.1029/2006JA012222
Dobrijevic, M., Loison, J. C., Hickson, K. M., &Gronoff, G. (2016). 1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan. \icarus, 268, 313–339. https://doi.org/10.1016/j.icarus.2015.12.045
Dougherty, M. K., Kellock, S., Southwood, D. J., Balogh, A., Smith, E. J., Tsurutani, B. T., Gerlach, B., Glassmeier, K. H., Gleim, F., Russell, C. T., Erdos, G., Neubauer, F. M., &Cowley, S. W. H. (2004). The Cassini magnetic field investigation. Space Science Reviews, 114(1–4), 331–383. https://doi.org/10.1007/s11214-004-1432-2
Edberg, N. J. T., Andrews, D. J., Bertucci, C., Gurnett, D. A., Holmberg, M. K. G., Jackman, C. M., Kurth, W. S., Menietti, J. D., Opgenoorth, H. J., Shebanits, O., Vigren, E., &Wahlund, J.-E. (2015). Effects of Saturn’s magnetospheric dynamics on Titan’s ionosphere. Journal of Geophysical Research (Space Physics), 120(10), 8884–8898. https://doi.org/10.1002/2015JA021373
Edberg, N. J. T., Andrews, D. J., Shebanits, O., Ögren, K., Wahlund, J.-E., Opgenoorth, H. J., Roussos, E., Garnier, P., Cravens, T. E., Badman, S. V., Modolo, R., Bertucci, C., &Dougherty, M. K. (2013). Extreme densities in Titan’s ionosphere during the T85 magnetosheath encounter. \grl, 40(12), 2879–2883. https://doi.org/10.1002/grl.50579
Edberg, N. J. T., Vigren, E., Snowden, D., Regoli, L. H., Shebanits, O., Wahlund, J.-E., Andrews, D. J., Bertucci, C., &Cui, J. (2018). Titan’s Variable Ionosphere During the T118 and T119 Cassini Flybys. \grl, 45(17), 8721–8728. https://doi.org/10.1029/2018GL078436
Edberg, N. J. T., Andrews, D. J., Bertucci, C., Gurnett, D. A., Holmberg, M. K. G., Jackman, C. M., Kurth, W. S., Menietti, J. D., Opgenoorth, H. J., Shebanits, O., Vigren, E., &Wahlund, J. E. (2015). Effects of Saturn’s magnetospheric dynamics on Titan’s ionosphere. Journal of Geophysical Research A: Space Physics, 120(10), 8884–8898. https://doi.org/10.1002/2015JA021373
Edberg, N. J. T., Wahlund, J. E., Ågren, K., Morooka, M. W., Modolo, R., Bertucci, C., &Dougherty, M. K. (2010). Electron density and temperature measurements in the cold plasma environment of Titan: Implications for atmospheric escape. Geophysical Research Letters, 37(20), 3–7. https://doi.org/10.1029/2010GL044544
English, M. A., Lara, L. M., Lorenz, R. D., Ratcliff, P. R., &Rodrigo, R. (1996). Ablation and chemistry of meteoric materials in the atmosphere of Titan. Advances in Space Research, 17(12), 157–160. https://doi.org/10.1016/0273-1177(95)00774-9
Flasar, F. M., &Cirs Investigation Team. (2004). Probing Titan’s atmospheric composition and evolution with Cassini CIRS. 35th COSPAR Scientific Assembly, 35, 534.
Fortes, A. D., Grindrod, P. M., Trickett, S. K., &Vočadlo, L. (2007). Ammonium sulfate on Titan: Possible origin and role in cryovolcanism. Icarus, 188(1), 139–153. https://doi.org/10.1016/j.icarus.2006.11.002
Fox, J. L., &Yelle, R.V. (1997). Hydrocarbon ions in the ionosphere of Titan. Geophysical Research Letters, 24(17), 2179–2182. https://doi.org/10.1029/97GL02051
Galand, M., Yelle, R. V., Coates, A. J., Wahlund, J., &Backes, H. (2006). Electron temperature at Titan. AGU Fall Meeting Abstracts, 2006, P41A-1262.
Gan, L., Cravens, T. E., &Keller, C. N. (1993). A Time-Dependent Model of Suprathermal Electrons at Titan. In T. I.Gombosi (Ed.), Plasma Environments of Non-Magnetic Planets (p. 171).
Gan, L., Keller, C. N., &Cravens, T. E. (1992). Electrons in the ionosphere of Titan. Journal of Geophysical Research: Space Physics, 97(A8), 12137–12151. https://doi.org/10.1029/92JA00300
Garnier, P., Dandouras, I., Toublanc, D., Brandt, P. C., Roelof, E. C., Mitchell, D. G., Krimigis, S. M., Krupp, N., Hamilton, D. C., &Waite, H. (2007). The exosphere of Titan and its interaction with the kronian magnetosphere: MIMI observations and modeling. Planetary and Space Science, 55(1–2), 165–173. https://doi.org/10.1016/j.pss.2006.07.006
Garnier, P., Dandouras, I., Toublanc, D., Roelof, E. C., Brandt, P. C., Mitchell, D. G., Krimigis, S. M., Krupp, N., Hamilton, D. C., Dutuit, O., &Wahlund, J. E. (2008). The lower exosphere of Titan: Energetic neutral atoms absorption and imaging. Journal of Geophysical Research: Space Physics, 113(10), 1–13. https://doi.org/10.1029/2008JA013029
Gurnett, D. A., Kurth, W. S., Kirchner, D. L., Hospodarsky, G. B., Averkamp, T. F., Zarka, P., Lecacheux, A., Manning, R., Roux, A., Canu, P., Cornilleau-Wehrlin, N., Galopeau, P., Meyer, A., Boström, R., Gustafsson, G., Wahlund, J. E., Åhlen, L., Rucker, H. O., Ladreiter, H. P., …Pedersen, A. (2004). The Cassini radio and plasma wave investigation. Space Science Reviews, 114(1–4), 395–463. https://doi.org/10.1007/s11214-004-1434-0
Hanel, R., Conrath, B., Flasar, F. M., Kunde, V., Maguire, W., Pearl, J., Pirraglia, J., Samuelson, R., Herath, L., Allison, M., Cruikshank, D., Gautier, D., Gierasch, P., Horn, L., Koppany, R., &Ponnamperuma, C. (1981). Infrared observations of the Saturnian system from Voyager 1. Science, 212, 192–200. https://doi.org/10.1126/science.212.4491.192
Hartle, R. E., Sittler, E. C., Ogilvie, K. W., Scudder, J. D., Lazarus, A. J., &Atreya, S. K. (1982). Titan’s ion exosphere observed from Voyager 1. Journal of Geophysical Research: Space Physics, 87(A3), 1383–1394. https://doi.org/10.1029/JA087iA03p01383
Hébrard, E., Dobrijevic, M., Loison, J. C., Bergeat, A., Hickson, K. M., &Caralp, F. (2013). Photochemistry of C$_{3}$H$_{p}$ hydrocarbons in Titan’s stratosphere revisited. \aap, 552, A132. https://doi.org/10.1051/0004-6361/201220686
Hsu, J.-K., &Ip, W.-H. (2019). Estimates of the Atmospheric Escape Rates of CH 4 from Titan . The Astrophysical Journal, 878(1), 3. https://doi.org/10.3847/1538-4357/ab1d59
Hunten, D. M., Tomasko, M. G., Flasar, F. M., Samuelson, R. E., Strobel, D. F., &Stevenson, D. J. (1984). Titan. In T.Gehrels &M. S.Matthews (Eds.), Saturn (pp. 671–759).
Hunten, D. M. (2002). Exospheres and planetary escape. Geophysical Monograph Series, 130, 191–202. https://doi.org/10.1029/130GM12
Hunten, D. M., Pepin, R. O., &Walker, J. C. G. (1987). Mass fractionation in hydrodynamic escape. Icarus, 69(3), 532–549. https://doi.org/10.1016/0019-1035(87)90022-4
Ip, W.-H. (1990). Titan’s Upper Ionosphere. \apj, 362, 354. https://doi.org/10.1086/169271
Jeans, J. H. (1955). The dynamical theory of gases.
Jiang, F., Cui, J., &Xu, J. (2017). The Structure of Titan’s N 2 and CH 4 Coronae . The Astronomical Journal, 154(6), 271. https://doi.org/10.3847/1538-3881/aa9936
Keller, C. N., Anicich, V. G., &Cravens, T. E. (1998). Model of Titans ionosphere with detailed hydrocarbon ion chemistry. lanss, 46(9–10), 1157–1174. https://doi.org/10.1016/S0032-0633(98)00053-1
Keller, C. N., Cravens, T. E., &Gan, L. (1992). A model of the ionosphere of Titan. \jgr, 97(A8), 12117–12135. https://doi.org/10.1029/92JA00231
Keller, C. N., Anicich, V. G., &Cravens, T. E. (1998). Model of Titan’s ionosphere with detailed hydrocarbon ion chemistry. Planetary and Space Science, 46(9–10), 1157–1174. https://doi.org/10.1016/s0032-0633(98)00053-1
Kliore, A. J., Nagy, A. F., Cravens, T. E., Richard, M. S., &Rymer, A. M. (2011). Unusual electron density profiles observed by Cassini radio occultations in Titan’s ionosphere: Effects of enhanced magnetospheric electron precipitation? Journal of Geophysical Research: Space Physics, 116(11), 1–7. https://doi.org/10.1029/2011JA016694
Kliore, A. J., Nagy, A. F., Marouf, E. A., French, R. G., Flasar, F. M., Rappaport, N. J., Anabttawi, A., Asmar, S. W., Kahann, D. S., Barbinis, E., Goltz, G. L., Fleischman, D. U., &Rochblatt, D. J. (2008). First results from the Cassini radio occultations of the Titan ionosphere. Journal of Geophysical Research: Space Physics, 113(9), 1–9. https://doi.org/10.1029/2007JA012965
Koskinen, T. T., Yelle, R. V., Snowden, D. S., Lavvas, P., Sandel, B. R., Capalbo, F. J., Benilan, Y., &West, R. A. (2011). The mesosphere and lower thermosphere of Titan revealed by Cassini/UVIS stellar occultations. \icarus, 216(2), 507–534. https://doi.org/10.1016/j.icarus.2011.09.022
Lammer, H., &Bauer, S. J. (1991). Nonthermal atmospheric escape from Mars and Titan. Journal of Geophysical Research: Space Physics, 96(A2), 1819–1825. https://doi.org/10.1029/90ja01676
Lammer, H., &Bauer, S. J. (1993). Atmospheric mass loss from Titan by sputtering. Planetary and Space Science, 41(9), 657–663. https://doi.org/10.1016/0032-0633(93)90049-8
Lammer, H., Stumptner, W., &Bauer, S. J. (1998). Dynamic escape of H from Titan as consequence of sputtering induced heating. Planetary and Space Science, 46(9–10), 1207–1213. https://doi.org/10.1016/S0032-0633(98)00050-6
Lavvas, P., Campbell, L., Yelle, R. V., Galand, M., &Brunger, M. J. (2013). N2 states population and airglow in Titan’s atmosphere. European Planetary Science Congress, EPSC2013-287.
Lavvas, P., Griffith, C. A., &Yelle, R. V. (2011). Condensation in Titan’s atmosphere at the Huygens landing site. \icarus, 215(2), 732–750. https://doi.org/10.1016/j.icarus.2011.06.040
Lavvas, P., Yelle, R. V., &Vuitton, V. (2008). The Detached Haze Layer in Titan’s Mesosphere. AGU Fall Meeting Abstracts, 2008, P12A-04.
Lebonnois, S., Hourdin, F., Rannou, P., Luz, D., &Toublanc, D. (2003). Impact of the seasonal variations of composition on the temperature field of Titan’s stratosphere. \icarus, 163(1), 164–174. https://doi.org/10.1016/S0019-1035(03)00074-5
Lee, S. H., Zhang, H., Zong, Q. G., Otto, A., Rème, H., &Liebert, E. (2016). A statistical study of plasmaspheric plumes and ionospheric outflows observed at the dayside magnetopause. Journal of Geophysical Research A: Space Physics, 121(1), 492–506. https://doi.org/10.1002/2015JA021540
Lewis, G. R., André, N., Arridge, C. S., Coates, A. J., Gilbert, L. K., Linder, D. R., &Rymer, A. M. (2008). Derivation of density and temperature from the Cassini-Huygens CAPS electron spectrometer. Planetary and Space Science, 56(7), 901–912. https://doi.org/10.1016/j.pss.2007.12.017
Liang, M.-C., Heays, A., Lewis, B., Gibson, S., &Yung, Y. (2007). Source of Nitrogen Isotope Anomaly in HCN in the Atmosphere of Titan. AAS/Division for Planetary Sciences Meeting Abstracts #39, 47.05.
Lillis, R. J., Deighan, J., Fox, J. L., Bougher, S. W., Lee, Y., Combi, M. R., Cravens, T. E., Rahmati, A., Mahaffy, P. R., Benna, M., Elrod, M. K., McFadden, J. P., Ergun, R. E., Andersson, L., Fowler, C. M., Jakosky, B. M., Thiemann, E., Eparvier, F., Halekas, J. S., …Chaufray, J. Y. (2017). Photochemical escape of oxygen from Mars: First results from MAVEN in situ data. Journal of Geophysical Research: Space Physics, 122(3), 3815–3836. https://doi.org/10.1002/2016JA023525
Lindal, G. F., Wood, G. E., Hotz, H. B., Sweetnam, D. N., Eshleman, V. R., &Tyler, G. L. (1983). The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements. \icarus, 53(2), 348–363. https://doi.org/10.1016/0019-1035(83)90155-0
Lorenz, R. D., Brown, M. E., &Flasar, F. M. (2009). Seasonal Change on Titan. In Titan from Cassini-Huygens (Vol. 2, Issue 5, pp. 353–372). Springer Netherlands. https://doi.org/10.1007/978-1-4020-9215-2_14
Lorenz, R. D., Turtle, E. P., Barnes, J. W., Trainer, M. G., Adams, D. S., Hibbard, K. E., Sheldon, C. Z., Zacny, K., Peplowski, P. N., Lawrence, D. J., Ravine, M. A., McGee, T. G., Sotzen, K. S., MacKenzie, S. M., Langelaan, J. W., Schmitz, S., Wolfarth, L. S., &Bedini, P. D. (2018). Dragonfly: A rotorcraft lander concept for scientific exploration at titan. Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 34(3), 374–387.
Lundin, R., Lammer, H., &Ribas, I. (2007). Planetary magnetic fields and solar forcing: Implications for atmospheric evolution. Space Science Reviews, 129(1–3), 245–278. https://doi.org/10.1007/s11214-007-9176-4
Ma, Y., Nagy, A. F., Toth, G., Najib, D., Cravens, T. E., Crary, F., Coates, A. J., Bertucci, C., &Neubauer, F. M. (2006). 3D Global MHD Simulation of Titan’s interaction with its surrounding plasma. AGU Fall Meeting Abstracts, 2006, P21B-07.
Ma, Y., Russell, C. T., Andrew, N. F., Cravens, T. E., Neubauer, F. M., Dougherty, M. K., Coates, A. J., Wahlund, J., &Crary, F. J. (2007). Titan’s magnetospheric interaction. AGU Fall Meeting Abstracts, 2007, P51D-03.
Madanian, H., Cravens, T. E., Richard, M. S., Waite Jr., J. H., Edberg, N. J. T., Westlake, J. H., &Wahlund, J.-E. (2016). Solar cycle variations in ion composition in the dayside ionosphere of Titan. Journal of Geophysical Research: Space Physics, 121(8), 8013–8037. https://doi.org/10.1002/2015JA022274
Magee, B. A., Waite, J. H., Mandt, K. E., Westlake, J., Bell, J., &Gell, D. A. (2009). INMS-derived composition of Titan’s upper atmosphere: Analysis methods and model comparison. lanss, 57(14–15), 1895–1916. https://doi.org/10.1016/j.pss.2009.06.016
Mandt, K. E., Gell, D. A., Perry, M., Hunter Waite, J., Crary, F. A., Young, D., Magee, B. A., Westlake, J. H., Cravens, T., Kasprzak, W., Miller, G., Wahlund, J. E., Gren, K., Edberg, N. J. T., Heays, A. N., Lewis, B. R., Gibson, S. T., DeLa Haye, V., &Liang, M. C. (2012). Ion densities and composition of Titan’s upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations. Journal of Geophysical Research E: Planets, 117(10), 1–22. https://doi.org/10.1029/2012JE004139
Marov, M., Shematovich, V., &Bisicalo, D. (1996). Nonequilibrium aeronomic processes. Space Science Reviews, 76(1–2), 240583. https://doi.org/10.1007/bf00240583
Matson, D. L., Spilker, L. J., &Lebreton, J.-P. (2002). The Cassini/Huygens Mission to the Saturnian System. Space Science Reviews, 104(1), 1–58. https://doi.org/10.1023/A:1023609211620
McEwan, M. J., &Anicich, V. G. (2007). Titan’s ion chemistry: A laboratory perspective. Mass Spectrometry Reviews, 26(2), 281–319. https://doi.org/10.1002/mas.20117
McKay, C. P., Scattergood, T. W., Pollack, J. B., Borucki, W. J., &Ghyseghem, H. T. V. (1988). High-temperature shock formation of N2 and organics on primordial titan. Nature, 332(6164), 520–522. https://doi.org/10.1038/332520a0
Michael, M., Johnson, R. E., Leblanc, F., Liu, M., Luhmann, J. G., &Shematovich, V. I. (2005). Ejection of nitrogen from Titan’s atmosphere by magnetospheric ions and pick-up ions. Icarus, 175(1), 263–267. https://doi.org/10.1016/j.icarus.2004.11.004
Molina-Cuberos, G. J., López-Moreno, J. J., Rodrigo, R., Lara, L. M., &O’Brien, K. (1999). Ionization by cosmic rays of the atmosphere of Titan. Planetary and Space Science, 47(10–11), 1347–1354. https://doi.org/10.1016/S0032-0633(99)00056-2
Mosqueira, I., &Estrada, P. R. (2003). Formation of the regular satellites of giant planets in an extended gaseous nebula I: Subnebula model and accretion of satellites. Icarus, 163(1), 198–231. https://doi.org/10.1016/S0019-1035(03)00076-9
Mousis, O., Gautier, D., &Bockelée-Morvan, D. (2002). An evolutionary turbulent model of Saturn’s subnebula: Implications for the Origin of the atmosphere of Titan. Icarus, 156(1), 162–175. https://doi.org/10.1006/icar.2001.6782
Mukundan, V., &Bhardwaj, A. (2018a). A Model for Negative Ion Chemistry in Titan{\textquoteright}s Ionosphere. \apj, 856(2), 168. https://doi.org/10.3847/1538-4357/aab1f5
Mukundan, V., &Bhardwaj, A. (2018b). Dayside ionosphere of Titan: Impact on calculated plasma densities due to variations in the model parameters. \icarus, 299, 222–239. https://doi.org/10.1016/j.icarus.2017.07.022
Müller-Wodarg, I. C. F., Yelle, R.V., Cui, J., &Waite, J. H. (2008). Horizontal structures and dynamics of Titan’s thermosphere. Journal of Geophysical Research, 113(E10), E10005. https://doi.org/10.1029/2007JE003033
Niemann, H. B., Atreya, S. K., Bauer, S. J., Biemann, K., Block, B., Carignan, G. R., Donahue, T. M., Frost, R. L., Gautier, D., Haberman, J. A., Harpold, D., Hunten, D. M., Israel, G., Lunine, J. I., Mauersberger, K., Owen, T. C., Raulin, F., Richards, J. E., &Way, S. H. (2002). The Gas Chromatograph Mass Spectrometer for the Huygens Probe. \ssr, 104(1), 553–591. https://doi.org/10.1023/A:1023680305259
Niemann, H. B., Atreya, S. K., Bauer, S. J., Carignan, G. R., Demick, J. E., Frost, R. L., Gautier, D., Haberman, J. A., Harpold, D. N., Hunten, D. M., Israel, G., Lunine, J. I., Kasprzak, W. T., Owen, T. C., Paulkovich, M., Raulin, F., Raaen, E., &Way, S. H. (2005). The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature, 438(7069), 779–784. https://doi.org/10.1038/nature04122
Prinn, R. G., &Fegley, B., J. (1981). Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae - Implications for satellite composition. The Astrophysical Journal, 249(9), 308. https://doi.org/10.1086/159289
Raulin, F., Brassé, C., Poch, O., &Coll, P. (2012). Prebiotic-like chemistry on Titan. Chemical Society Reviews, 41(16), 5380–5393. https://doi.org/10.1039/c2cs35014a
Raulin, F., Mourey, D., &Toupance, G. (1982). Organic syntheses from CH$_{4}$-N$_{2}$ atmospheres: Implications for Titan. Origins of Life, 12(3), 267–279. https://doi.org/10.1007/BF00926897
Rees, M. H. (1989). Physics and Chemistry of the Upper Atmosphere.
Richard, M., Cravens, T. E., Westlake, J. H., Rymer, A. M., Mandt, K. E., &Wahlund, J.-E. (2013). Sources of Titan’s Ionosphere as Determined by Cassini Data. European Planetary Science Congress, EPSC2013-582.
Richard, M. S., Cravens, T. E., Wylie, C., Webb, D., Chediak, Q., Perryman, R., Mandt, K., Westlake, J., Waite Jr., J. H., Robertson, I., Magee, B. A., &Edberg, N. J. T. (2015). An empirical approach to modeling ion production rates in Titan’s ionosphere I: Ion production rates on the dayside and globally. Journal of Geophysical Research: Space Physics, 120(2), 1264–1280. https://doi.org/10.1002/2013JA019706
Rosenqvist, L., Wahlund, J.-E., \rAgren, K., Modolo, R., Opgenoorth, H. J., Strobel, D., Müller-Wodarg, I., Garnier, P., &Bertucci, C. (2009). Titan ionospheric conductivities from Cassini measurements. lanss, 57(14–15), 1828–1833. https://doi.org/10.1016/j.pss.2009.01.007
Russell, C. T. (2005). The Cassini-Huygens Mission (Vol. 114).
Rymer, A. M., Smith, H. T., Wellbrock, A., Coates, A. J., &Young, D. T. (2009). Discrete classification and electron energy spectra of Titan’s varied magnetospheric environment. Geophysical Research Letters, 36(15), 1–6. https://doi.org/10.1029/2009GL039427
Schaufelberger, A., Wurz, P., Lammer, H., &Kulikov, Y. N. (2012). Is hydrodynamic escape from Titan possible? Planetary and Space Science, 61(1), 79–84. https://doi.org/10.1016/j.pss.2011.03.011
Schunk, R., &Nagy, A. (2000). Ionospheres: Physics, Plasma Physics, and Chemistry, Atmos. Space Sci. Ser. https://doi.org/10.1017/CBO9780511635342
Shebanits, O., Vigren, E., Wahlund, J.-E., Edberg, N. J. T., Cui, J., Mandt, K. E., &Waite J. H., J. (2017). Photoionization Modeling of Titan{\textquoteright}s Dayside Ionosphere. \apjl, 850(2), L26. https://doi.org/10.3847/2041-8213/aa998d
Shemansky, D. E., Hallett, J. T., &Liu, X. (2005). The First Cassini UVIS Stellar Occultation of the Saturn Atmosphere. AGU Fall Meeting Abstracts, 2005, P23D-04.
Shematovich, V. I., Johnson, R. E., Michael, M., &Luhmann, J. G. (2003). Nitrogen loss from Titan. Journal of Geophysical Research (Planets), 108(E8), 5087. https://doi.org/10.1029/2003JE002094
Shematovich, V. I., &Marov, M. Y. (2018). Escape of planetary atmospheres: physical processes and numerical models. Uspekhi Fizicheskih Nauk, 188(03), 233–265. https://doi.org/10.3367/ufnr.2017.09.038212
Shizgal, B. D., &Arkos, G. G. (1996). Nonthermal escape of the atmospheres of Venus, Earth, and Mars. Reviews of Geophysics, 34(4), 483–505. https://doi.org/10.1029/96RG02213
Simon, S., Wennmacher, A., Neubauer, F. M., Bertucci, C. L., Kriegel, H., Saur, J., Russell, C. T., &Dougherty, M. K. (2010). Titan’s highly dynamic magnetic environment: A systematic survey of Cassini magnetometer observations from flybys TAT62. Planetary and Space Science, 58(10), 1230–1251. https://doi.org/10.1016/j.pss.2010.04.021
Sittler, E. C., Ali, A., Cooper, J. F., Hartle, R. E., Johnson, R. E., Coates, A. J., &Young, D. T. (2009). Heavy ion formation in Titan’s ionosphere: Magnetospheric introduction of free oxygen and a source of Titan’s aerosols? Planetary and Space Science, 57(13), 1547–1557. https://doi.org/10.1016/j.pss.2009.07.017
Snowden, D., &Yelle, R.V. (2014a). The global precipitation of magnetospheric electrons into titan’s upper atmosphere. Icarus, 243, 1–15. https://doi.org/10.1016/j.icarus.2014.08.027
Snowden, D., Yelle, R.V., Cui, J., Wahlund, J. E., Edberg, N. J. T., &Ågren, K. (2013). The thermal structure of titan’s upper atmosphere, I: Temperature profiles from Cassini INMS observations. Icarus, 226(1), 552–582. https://doi.org/10.1016/j.icarus.2013.06.006
Snowden, D., &Yelle, R.V. (2014b). The global precipitation of magnetospheric electrons into Titan’s upper atmosphere. Icarus, 243, 1–15. https://doi.org/https://doi.org/10.1016/j.icarus.2014.08.027
Strobel, D F, &Cui, J. (2014). Titan’s upper atmosphere/exosphere, escape processes, and rates. In I.Müller-Wodarg, C. A.Griffith, E.Lellouch, &T. E. E.Cravens (Eds.), Titan: Interior, Surface, Atmosphere, and Space Environment (pp. 355–375). Cambridge University Press. https://doi.org/10.1017/CBO9780511667398.013
Strobel, D. F. (2008). Titan’s hydrodynamically escaping atmosphere. Icarus, 193(2), 588–594. https://doi.org/10.1016/j.icarus.2007.08.014
Strobel, D. F. (2009). Titan’s hydrodynamically escaping atmosphere: Escape rates and the structure of the exobase region. Icarus, 202(2), 632–641. https://doi.org/10.1016/j.icarus.2009.03.007
Strobel, D. F., Summers, M. E., &Zhu, X. (1992). Titan’s upper atmosphere: Structure and ultraviolet emissions. Icarus, 100(2), 512–526. https://doi.org/10.1016/0019-1035(92)90114-M
Teanby, N. A., Irwin, P. G. J., Nixon, C. A., deKok, R., Vinatier, S., Coustenis, A., Sefton-Nash, E., Calcutt, S. B., &Flasar, F. M. (2012). Active upper-atmosphere chemistry and dynamics from polar circulation reversal on Titan. \nat, 491(7426), 732–735. https://doi.org/10.1038/nature11611
Tobie, G., Choukroun, M., Grasset, O., LeMouélic, S., Lunine, J. ., Sotin, C., Bourgeois, O., Gautier, D., Hirtzig, M., Lebonnois, S., &LeCorre, L. (2009). Evolution of Titan and implications for its hydrocarbon cycle. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1889), 617–631. https://doi.org/10.1098/rsta.2008.0246
Tomasko, M. G., Doose, L., Engel, S., Dafoe, L. E., West, R., Lemmon, M., Karkoschka, E., &See, C. (2008). A model of Titan’s aerosols based on measurements made inside the atmosphere. lanss, 56(5), 669–707. https://doi.org/10.1016/j.pss.2007.11.019
Tomasko, M. G., &West, R. A. (2009). Aerosols in Titan’s Atmosphere. In Titan from Cassini-Huygens (pp. 297–321). Springer Netherlands. https://doi.org/10.1007/978-1-4020-9215-2_12
Tseng, W. L., Ip, W. H., &Kopp, A. (2008). Exospheric heating by pickup ions at Titan. Advances in Space Research, 42(1), 54–60. https://doi.org/10.1016/j.asr.2008.03.009
Tucker, O. J., &Johnson, R. E. (2009). Thermally driven atmospheric escape: Monte Carlo simulations for Titan’s atmosphere. Planetary and Space Science, 57(14–15), 1889–1894. https://doi.org/10.1016/j.pss.2009.06.003
Tucker, O. J., Waalkes, W., Tenishev, V. M., Johnson, R. E., Bieler, A., Combi, M. R., &Nagy, A. F. (2016). Examining the exobase approximation: DSMC models of Titan’s upper atmosphere. Icarus, 272, 290–300. https://doi.org/10.1016/j.icarus.2016.02.044
Tyler, G. L. (1987). Radio Propagation Experiments in the Outer Solar System with Voyager. Proceedings of the IEEE, 75(10), 1404–1431. https://doi.org/10.1109/PROC.1987.13896
Vinatier, S., Bezard, B., Nixon, C. A., Mamoutkine, A., Carlson, R. C., Jennings, D. E., Guandique, E. A., Teanby, N. A., Bjoraker, G. L., Flasar, F. M., &Kunde, V. G. (2010). Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission I. Hydrocarbons, nitriles and CO2 vertical mixing ratio profiles. Icarus, 205, 559–570. https://doi.org/10.1016/j.icarus.2009.08.013
Vuitton, V., Lavvas, P., Yelle, R. V., Galand, M., Wellbrock, A., Lewis, G. R., Coates, A. J., &Wahlund, J.-E. (2009). Negative ion chemistry in Titan’s upper atmosphere. lanss, 57(13), 1558–1572. https://doi.org/10.1016/j.pss.2009.04.004
Vuitton, V., Yelle, R.V., &Anicich, V. G. (2006). THE NITROGEN CHEMISTRY OF TITAN’S UPPER ATMOSPHERE REVEALED V. Vuitton and R. V. Yelle. The Astrophysical Journal, 647(August), L175–L178.
Vuitton, V., Yelle, R.V., &Cui, J. (2008). Formation and distribution of benzene on Titan. Journal of Geophysical Research E: Planets, 113(5), 1–18. https://doi.org/10.1029/2007JE002997
Vuitton, V., Yelle, R.V., &McEwan, M. J. (2007). Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus, 191(2), 722–742. https://doi.org/10.1016/j.icarus.2007.06.023
Wahlund, J. E., Boström, R., Gustafsson, G., Gurnett, D. A., Kurth, W. S., Pedersen, A., Averkamp, T. F., Hospodarsky, G. B., Persoon, A. M., Canu, P., Neubauer, F. M., Dougherty, M. K., Eriksson, A. I., Morooka, M. W., Gill, R., André, M., Eliasson, L., &Müller-Wodarg, I. (2005). Cassini measurements of cold plasma in the ionosphere of Titan. Science, 308(5724), 986–989. https://doi.org/10.1126/science.1109807
Waite, J. H., Lewis, W. S., Kasprzak, W. T., Anicich, V. G., Block, B. P., Cravens, T. E., Fletcher, G. G., Ip, W.-H., Luhmann, J. G., McNutt, R. L., Niemann, H. B., Parejko, J. K., Richards, J. E., Thorpe, R. L., Walter, E. M., &Yelle, R. V. (2004). The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation. \ssr, 114(1–4), 113–231. https://doi.org/10.1007/s11214-004-1408-2
Waite, J. H., Young, D. T., Cravens, T. E., Coates, A. J., Crary, F. J., Magee, B., &Westlake, J. (2007). The Process of Tholin Formation in Titan{\textquoteright}s Upper Atmosphere. Science, 316(5826), 870. https://doi.org/10.1126/science.1139727
Waite, J. H., Lewis, W. S., Kasprzak, W. T., Anicich, V. G., Block, B. P., Cravens, T. E., Fletcher, G. G., Luhmann, J. G., Mcnutt, R. L., Niemann, H. B., Parejko, J. K., Richards, J. E., Thorpe, R. L., Walter, E. M., &Yelle, R.V. (2004). THE CASSINI ION AND NEUTRAL MASS SPECTROMETER ( INMS ) 1 . Introduction and Scientific Background The Cassini spacecraft will enter Saturn orbit in July 2004 . During Cassini ’ s 4-year exploration of the Saturn system , the INMS instrument will acquire d. Space Science Reviews, 114, 113–231. https://doi.org/10.1007/s11214-004-1408-2
Waite, J. H., Young, D. T., Cravens, T. E., Coates, A. J., Crary, F. J., Magee, B., &Westlake, J. (2007). The Process of Tholin Formation in Titan’s Upper Atmosphere. Science, 316(5826), 870–875. https://doi.org/10.1126/science.1139727
Wellbrock, A., Coates, A. J., Jones, G. H., Vuitton, V., Lavvas, P., Desai, R. T., &Waite, J. H. (2019). Heavy negative ion growth in Titan’s polar winter. \mnras, 490(2), 2254–2261. https://doi.org/10.1093/mnras/stz2655
Wellbrock, A., Coates, A. J., Jones, G. H., Lewis, G. R., &Waite, J. H. (2013). Cassini CAPS-ELS observations of negative ions in Titan’s ionosphere: Trends of density with altitude. Geophysical Research Letters, 40(17), 4481–4485. https://doi.org/10.1002/grl.50751
Westlake, J. H., Paranicas, C., Cravens, T. E., Luhmann, J. G., Mandt, K., Smith, H. T., Mitchell, D. G., Rymer, A. M., Perry, M. E., Waite, J. H., &Wahlund, J. (2012). The Composition of Titan’s Ionospheric Outflow. AGU Fall Meeting Abstracts, 2012, P21F-1897.
Westlake, J. H., Bell, J. M., Waite, J. H., Johnson, R. E., Luhmann, J. G., Mandt, K. E., Magee, B. A., &Rymer, A. M. (2011). Titan’s thermospheric response to various plasma environments. Journal of Geophysical Research: Space Physics, 116(3), 1–12. https://doi.org/10.1029/2010JA016251
Westlake, J. H., Waite, J. H., Carrasco, N., Richard, M., &Cravens, T. (2014). The role of ion-molecule reactions in the growth of heavy ions in Titan’s ionosphere. Journal of Geophysical Research: Space Physics, 119(7), 5951–5963. https://doi.org/10.1002/2014JA020208
Whitten, R. C., Borucki, W. J., &Tripathi, S. (2007). Predictions of the electrical conductivity and charging of the aerosols in Titan’s nighttime atmosphere. Journal of Geophysical Research (Planets), 112(E4), E04001. https://doi.org/10.1029/2006JE002788
Wilson, E. H., &Atreya, S. K. (2003). Chemical sources of haze formation in Titan’s atmosphere. lanss, 51(14–15), 1017–1033. https://doi.org/10.1016/j.pss.2003.06.003
Wilson, E. H., &Atreya, S. K. (2004). Current state of modeling the photochemistry of Titan’s mutually dependent atmosphere and ionosphere. Journal of Geophysical Research E: Planets, 109(6). https://doi.org/10.1029/2003JE002181
Wilson, Eric H, &Atreya, S. K. (2009). Titan’s Carbon Budget and the Case of the Missing Ethane. The Journal of Physical Chemistry A, 113(42), 11221–11226. https://doi.org/10.1021/jp905535a
Yelle, R.V., Cui, J., &Müller-Wodarg, I. C. F. (2008). Methance escape from Titan’s atmosphere. Journal of Geophysical Research E: Planets, 113(10), 10003. https://doi.org/10.1029/2007JE003031
Yelle, RogerV. (1991). Non--LTE Models of Titan’s Upper Atmosphere. \apj, 383, 380. https://doi.org/10.1086/170796
Young, D., Berthelier, J., Blanc, M., Burch, J., Coates, A., Grande, M., Hill, T., Johnson, R., Kelha, V., Mccomas, D., Sittler, E., Svenes, K., Szego, K., Tanskanen, P., Ahola, K., Anderson, D., Bakshi, S., Baragiola, R., &Zinsmeyer, C. (2004). Cassini Plasma Spectrometer Investigation. Space Science Reviews, 114, 1–112. https://doi.org/10.1007/s11214-004-1406-4
Young, D. T., Berthelier, J. J., Blanc, M., Burch, J. L., Coates, A. J., Goldstein, R., Grande, M., Hill, T. W., Johnson, R. E., Kelha, V., Mccomas, D. J., Sittler, E. C., Svenes, K. R., Szegö, K., Tanskanen, P., Ahola, K., Anderson, D., Bakshi, S., Baragiola, R. A., …Zinsmeyer, C. (2004). Cassini Plasma Spectrometer Investigation. Space Science Reviews, 114(1–4), 1–112. https://doi.org/10.1007/s11214-004-1406-4
Yung, Y. L., Allen, M., &Pinto, J. P. (1984). Photochemistry of the atmosphere of Titan - Comparison between model and observations. \apjs, 55, 465–506. https://doi.org/10.1086/190963
Yung, Y. L. (1987). An update of nitrile photochemistry on Titan. Icarus, 72(2), 468–472. https://doi.org/10.1016/0019-1035(87)90186-2
Zhang, B., Brambles, O. J., Lotko, W., Ouellette, J. E., &Lyon, J. G. (2015). Journal of Geophysical Research : Space Physics The role of ionospheric O + outflow in the generation of earthward propagating plasmoids. 1–11. https://doi.org/10.1002/2015JA021667
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文