(3.236.118.225) 您好!臺灣時間:2021/05/16 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪萱芸
研究生(外文):Hsuan-Yun Hung
論文名稱:以希爾伯特-黃轉換辨識並濾除特高頻雷達飛機雜波
指導教授:朱延祥
指導教授(外文):Yen-Hsyang Chu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:太空科學與工程研究所
學門:自然科學學門
學類:天文及太空科學學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:151
中文關鍵詞:希爾伯特-黃轉換
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去十年之間,Mesosphere-Stratosphere-Troposphere(MST)雷達廣泛應用觀測大氣結構,例如大氣亂流(Turbulence)、大氣降水(Precipitation)、層狀結構以及大氣三維風場(3-Dimensional Wind Field)等,由於中壢特高頻(Very High Frequency, VHF)雷達站的觀測範圍位於飛機航道上,因此在觀測期間飛機飛越雷達波束時,則使得觀測資料內有飛機雜波(Clutter)在其中。
本文為利用小波轉換(Wavelet Transform, WT)以及希爾伯特-黃轉換(Hilbert-Huang Transform, HHT)作為基礎設計濾除飛機訊號之步驟,文中利用2017年5月15日至16日(UT)之雷達資料,比較利用兩種轉換所設計的步驟之濾除飛機訊號命中率與誤報率,而在結果中以利用希爾伯特-黃轉換作為基礎者命中率在十公里上下皆比以小波轉換作為基礎者高,並且在十公里以下命中率高達93.28%,誤報率僅有5.09%。
文末,我們將雷達資料通過希爾伯特-黃轉換所設計濾除飛機訊號步驟後,比較濾除飛機訊號前後之飛機回波功率,結果顯示飛機回波功率可濾除將近40dB左右,在飛機訊雜比部分各個高度飛機訊雜比在濾除飛機訊號後皆比濾除前皆明顯降低10-15dB左右,此外,我們將飛機回波功率進行高度之校正,可以發現飛機回波功率經由校正後趨勢變化較為一致,並且我們將實部與虛部本質模態函數C1至C4分量檢測到的飛機回波功率,與利用頻譜圖手動擬合之飛機回波功率進行比較,結果顯示其兩者趨勢相似,然而亦比較大氣平均都卜勒平移、頻譜寬以及大氣回波功率經由濾除飛機訊號步驟前後是否受到影響,在大氣平均都卜勒平移、頻譜寬部份,結果顯示濾除飛機訊號前後大氣平均都卜勒平移、頻譜寬差異皆小於0.05 Hz,然而我們的頻率解析度為0.0763 Hz,因此其值為可以接受之範圍,而大氣回波功率部分濾除飛機訊號前後改變並不大,然而大氣訊雜比的部分濾除飛機訊號後皆比濾除飛機訊號前大3dB左右。
In the past decades, Mesosphere-Stratosphere-Troposphere radars have been widely applied to observe atmospheric structure and dynamics, such as turbulence, precipitation, layer structure, three-dimensional wind field and so on. Unwanted clutter were detected when observing atmospheric structure by Chung-Li VHF radar located near Taiwan Taoyuan International Airport.
The purpose of the following research is to investigate the removal of clutters based on wavelet transform (WT) and Hilbert-Huang Transform (HHT). Radar data from May 15th to 16th (UT) in 2017 are used to compare the success rate and error rate for effectiveness of both proposed methods in the removal of clutter. In the results, a 93.28% selectivity was observed below ten kilometers when HHT was employed, much higher than WT. In addition, a 5.09% false positive rate was only recorded for HHT below ten kilometers.
Besides that, airplane’s echo power from HHT-assisted clutter removal radar data was compared, and the result shows that about 40dB can be filtered out. In the airplane’s signal-to-noise ratio section, the result shows that about 10-15dB can be filtered out. Furthermore, A more consistent trend was obtained after the calibration on range for airplane echo power were made. Airplane echo power from C1 to C4 of Intrinsic Mode Function(IMF) and spectrum were also took into comparison, where it shows that the two airplanes’ echo power had similar trend . However, the effects of HHT-assisted method on other atmospheric parameters such as mean Doppler shift, spectrum width and air echo power were also discussed. The result shows that mean Doppler shift and spectrum width difference before and after filtering are less than 0.05Hz which is acceptable, the frequency resolution is 0.0763Hz. No significant changes in the air echo power were recoded. Finally, Atmospheric signal-to-noise ratio can be increased by about 3dB after filtered out airplane clutter.
摘要 i
Abstract iii
誌謝 v
目錄 vii
圖表目錄 ix
第一章 前言 1
1.1 VHF雷達發展史 1
1.2 中壢特高頻雷達 4
1.3 研究動機與論文簡介 9
第二章 觀測原理 12
2.1 VHF雷達回波特性 12
2.2 大氣折射指數 15
2.3 大氣回波機制 17
2.4 降水回波機制 21
2.5 飛機回波機制 24
第三章 研究方法 28
3.1 小波轉換(Wavelet Transform, WT) 28
3.1.1 連續小波轉換(Continuous Wavelet Transform) 30
3.1.2 離散小波轉換(Discrete Wavelet Transform) 36
3.2 希爾伯特-黃轉換(Hilbert-Huang Transform, HHT) 37
3.2.1 希爾伯特轉換(Hilbert Transform) 38
3.2.2 本質模態函數(Intrinsic Mode Function) 44
3.2.3 經驗模態分解(Empirical Mode Decomposition) 45
3.2.4 瞬時頻率(Instantaneous Frequency) 55
第四章 自動化步驟 59
4.1 依小波轉換之步驟 59
4.2 依希爾伯特-黃轉換之步驟 71
第五章 濾除飛機訊號之結果與討論 91
5.1 小波轉換與希爾伯特-黃之步驟比較 91
5.2 飛機回波功率於濾除飛機訊號前後之比較 92
5.3 大氣參數於濾除飛機訊號前後之比較 105
第六章 結論 109
6.1 結論 109
6.2 未來展望 111
參考資料 113
附錄 120
(1) Balsley, B. B. and K. S. Gage, 1980: “The MST radar technique: Potential for middle atmospheric studies”, Pure and Applied Geophys., Vol. 118, P. 452-493.
(2) Battan, L. J., 1973: “Radar observations of the atmosphere”, University of Chicago Press, Chicago, III, pp324.
(3) Boisse, J.-C., Klaus, V., and Aubagnac, J.-P., 1999:A Wavelet Transform Technique for Removing Airplane Echoes from ST Radar Signals, JOURNAL OF ATMOSPHERIC AND OCEANICTECHNOLOGY, 16, 334– 346.
(4) Booker, H. G. and Gordon, W. E., 1950: “A theory of radio scattering in the troposphere”, Proc. IRE 38:401-412.
(5) Browning, K. A. and Wexler, R., 1968: “The determination of kinematic properties of a wind field using Doppler radar”, J. Appl. Meteorol., 7, 105–113.
(6) Chilson, P. B., C. W. Ulbrich, and M. F. Larsen, 1993: “Observation of a tropical thunderstorm using a vertically pointing, dual-frequency, collinear beam Doppler radar”, J. Atmos. Oceanic Technol., 10, 663-673.
(7) Chu, Y. H., and L. P. Chian, 1991: “The investigation of the atmospheric precipitations by using Chung-Li VHF Radar”, Radio Sci., 26, 717-729.
(8) Chu, Y. H., and C. H. Lin, 1994: “The severe depletion of turbulent echo power in association with precipitation observed by using Chung-Li VHF Radar”, Radio Science, 29, 1311-1320.
(9) Chu, Y. H., T. Y. Chen, T. H. Lin, 1997: “An examination of the wind-driven on the drift of precipitation particles using the Chung-Li VHF Radar”, Radio Science, 3 2, 957-966.
(10) Chu, Y. H., and J. S. Song, 1998: “The observation of precipitation associated with cold front using VHF wind profiler and ground-based optical raingauge”, Journal of geophysical research, 103, 11401-11409.
(11) Chu, Y. H., S. P. Shih, C. L. Su, K. L. Lee, T. H. Lin, and W. C. Liang, 1999: “A study on the relation between terminal velocity and VHF backscatter from precipitation particles using the Chung-Li VHF Radar”, J. Appl. Meteor., 38, 1720-1728.
(12) Dolman, B. K., Reid, I. M., Tingwell, C., 2018:”Stratospheric tropospheric wind profiling radars in the Australian network”, Earth, Planets and Space, 70:170.
(13) Friend, A. W., 1949: “Theory and practice of tropospheric sounding by radar”, Proc. IRE, 37, 116–138.
(14) Fukao, S., K. Lakasugi, T. Sato, S. Morimoto, T. Tsuda, I. Hirota, I. Ximura, and S. Kato, 1985: “Simultaneous observation of precipitation atmosphere by VHF and C/Ku Band Radars”, Radio Sci., 20, 622-630.
(15) Gage, K. S., and B. B. Balsley, 1980: “On the scattering and reflection mechanisms contributing to clear-air radar echoes from the troposphere, stratosphere, and mesosphere”, Radio Science, 1 5, 243-257.
(16) Gage, K. S., W. L. Ecklund, and B. B. Balsley, 1985: “A modified Fresnel scattering model for the parameterization of Fresnel returns”, Radio Science, 20, 1493-1501.
(17) Haefele, A., and D. Ruffieux, 2015: “Validation of the 1290 MHz wind profiler at Payerne, Switzerland, using radiosonde GPS wind measurements”, Meteorol. Appl., 22, 873–878.
(18) Hocking, W. K., 1983(a): On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra—I. Theory, J. Atmos. Terr. Phys., Vol. 45, p89-102.
(19) Hocking, W. K., 1983(b): Mesospheric turbulence intensities measured with a VHF radar at 35°S—II, J. Atmos. Terr. Phys., Vol. 45, p103-114.
(20) Hocking, W. K., 1985: Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review, Radio Sci., Vol. 20, p1405-1422.
(21) Hocking, W. K., 1997: “System design, signal-processing procedures, and preliminary results for the Canadian (London, Ontario) VHF atmospheric radar”, Radio Sci., 32, 687–706.
(22) Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen ,N.-C., Tung , C. C., and Liu, H. H., 1998:The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. R. Soc. London, Ser. A, 454, 903–993.
(23) Huang, N. E., Wu, Z., Long, S. R., Arnold, K.C., Chen, X., Blank, K., 2009:On Instantaneous Frequency, Advance in Adaptive Data Analysis, Vol., 177-299.
(24) Kingsley, S.P. and Quegan, S., 1992: Understanding Radar Systems, McGraw-Hill.
(25) Kishore, P., K. K. Reddy, D. N. Rao, P. B. Rao, A. R. Jain, G. V. Rama, and S. Sankar, 2000: “A statistical comparison of Indian MST radar and rawinsonde wind measurements”, Indian Journal of Radio and Space Physics, 29, 102–114.
(26) Kottayil, A., K. Mohanakumar, Titu Samson, Rejoy Rebello, M. G. Manoj, Rakesh Varadarajan, K. R. Santosh, P. Mohanan, and K. Vasudevan, 2016: “Validation of 205 MHz wind profiler radar located at Cochin India using radiosonde wind measurements”, Radio Sci., Vol. 51, No. 3, 106-117.
(27) Larsen, M. F., and J. Rottger, 1987: “Observation of thunderstorm reflectivities and doppler velocities measured at VHF and UHF”, J. Atmos. Oceanic Technol., 4, 151-159.
(28) May, P. T., 1993: “Comparison of wind-profiler and radiosonde measurements in the tropics”, J. Atmos. Oceanic Technol., 10, 122–127.
(29) Ottersten, H.,1969: “Radar backscattering from the turbulent clear atmosphere”, Radio Sci., 4, 1251-1255.
(30) Sato, T. and R. F. Woodman, 1982: Fine altitude resolution observations of stratospheric turbulent layers by the Arecibo 430 MHz radar, J. Atmos. Sci., Vol. 39, p2546-2552.
(31) Tatarskii, V. I., 1961: “Wave Propagation in a Turbulent Medium”, McGraw-Hill, New York, 285pp.
(32) Thomas, L., I. Astin, and R. M. Worthington, 1997: “A statistical study of underestimates of wind speeds by VHF radar”, Annales Geophysicae, 15, 805–812.
(33) Tsuda, T., T. Sato, K. Hirose, S. Fukao and S. Kato, 1986: MU radar observations of the aspect sensitivity of backscattered VHF echo power in the troposphere and lower stratosphere, Radio Sci., Vol. 21, p971-980.
(34) Wait, J. R., 1962: “Electromagnetic waves in stratified media”, Pergamon Press, New York, pp 305.
(35) Weber, B. L., and D. B. Wuertz, 1990: “Comparison of rawinsonde and wind profiler radar measurements”, J. Atmos. Oceanic Technol., 7, 157–174.
(36) Weber, B. L., and Coauthors, 1990: “Preliminary evaluation of the first NOAA demonstration network wind profiler”, J. Atmos. Oceanic Technol., 7, 909–918.
(37) Woodman, R.F. and W.E. Guillen, 1974: “Radar Observations of Winds and Turbulence in the Stratosphere and Mesosphere”, J. Atmos. Sci., Vol.31, p.495-505
(38) Woodman, R. F. and Y. H. Chu, 1989: Aspect sensitivity measurements of VHF backscatter made with the Chung-Li radar: Plausible mechanisms, Radio Sci., Vol. 24, p113-125.
(39) Yeh, K. C., and C. H. Liu, 1974: “Theory of ionosphere waves, Academic Press, New York”, pp 464.
(40) Yufang TIAN and Daren LÜ, 2017: “Comparison of Beijing MST radar and radiosonde horizontal wind measurements“, J. Atmos. Sci., 34, 39-53.
(41) 朱延祥,MST 雷達回波機制的研究,博士論文,國立中央大學,1998。
(42) 朱延祥,中壢VHF雷達雷達遙測大氣原理與應用。
(43) 吳鎮仲,利用中壢特高頻雷達對颱風降水粒子終端速度與粒徑大小的關係,碩士論文,國立中央大學,1999。
(44) 宋俊賢,利用中壢特高頻雷達對鋒面降水進行觀測與研究,碩士論文,國立中央大學,1994。
(45) 李威志,以中壢VHF 雷達對颱風降水之觀測研究,碩士論文,國立中央大學,1998。
(46) 李贛麟,以中壢VHF 雷達對颱風降水進行觀測與研究,碩士論文,國立中央大學,1995。
(47) 林仲賢,利用中壢VHF 特高頻雷達對降水大氣進行高時間解析度的觀測研究,碩士論文,國立中央大學,1992。
(48) 林廷翰,中壢特高頻雷達系統初始相位偏差估計與應用,博士論文,國立中央大學,2019。
(49) 林澤宏,利用中壢VHF 雷達對背景大氣與降水顆粒交互作用之研究,碩士論文,國立中央大學,1996。
(50) 林鴻志,雷達訊號之時頻分析,碩士論文,國立中央大學,2006。
(51) 徐俊偉,特高頻雷達對空中降水粒子大小與回波功率關係之研究,碩士論文,國立中央大學,2003。
(52) 梁威中,以中壢VHF 雷達對鋒面降水進行觀測與研究,碩士論文,國立中央大學,1995。
(53) 陳孟遠,利用中壢特高頻雷達研究對流降水系統雨滴粒徑與速度之關係,碩士論文,國立中央大學,2000。
(54) 陳春溢,利用中壢VHF雷達對大氣及降水回波特性之研究,碩士論文,國立中央大學,2001。
(55) 陳朝信,利用中壢特高頻雷達研究雨滴粒徑分佈,碩士論文,國立中央大學,2009。
(56) 陳睿祥,利用中壢特高頻雷達觀測潭美颱風的降雨現象,碩士論文,國立中央大學,2014。
(57) 蘇清論,以中壢VHF 雷達對鋒面降水環境下大氣回波與降水粒子分布之特性研究,碩士論文,國立中央大學,1996。
電子全文 電子全文(網際網路公開日期:20221231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top