( 您好!臺灣時間:2021/05/17 09:42
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Christin Afrin Matondang
論文名稱(外文):Investigation of the Relationship between Warm Cloud Microphysical Properties and Raindrop Size Distribution over Northern Taiwan
指導教授(外文):Chian-Yi Liu
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
暖雲及其降水,因其對輻射強迫力以及降水性質,在天氣和氣候系統中扮演重要關鍵角色。而對於雨滴粒徑分布 (Raindrop Size Distribution; RSD) 的了解,則可進一步瞭解降水的多項參數及暖雲的微物理過程。但由於時空觀測的不連續性,因此現階段對於獲知暖雲內部發生詳細過程仍然具有挑戰性。因此本研究針對臺灣地區的暖雲及伴隨的地面降水RSDs特徵進行分析,利用2017年12月至2018年1月的冬季中,所蒐集到經過時空匹配的暖雲及降雨強度,經由RSD及不同降水級距的連結性,分析其變化與多項RSD資料的相關性。所分析的暖雲資料來自日本向日葵8號地球同步衛星,而國立中央大學的地面站撞擊式雨滴譜儀(Joss-WaldvogelDisdrometer; JWD)則代表暖雲降水的相對應地面特徵。
本研究發現於暖雲降水中,其雲特性具有一定特徵,亦即雲滴有效半徑(Cloud Effective Radius; CER)為20-30 µm,雲液態水路徑(Cloud Liquid Water Path; CLWP)為260-400 g m-2,雲頂氣壓(Cloud Top Pressure; CTP)為440-560 hPa 。 且進一步分析雨滴譜儀資料發現,當降雨強度增加時,其雨滴為高濃度的小粒徑雨滴、較高的總量濃度(NT)、更窄與單一的截距參數(log10Nw)、更小更均勻的形狀參數(µ)和斜率參數(Λ)。
分析暖雲的降水時之雲參數與雨滴參數,則得到更多的明顯特徵,因此之交互統計如:雲光學厚度(COT)與Dm和NT;CER與Dm、NT和log10Nw;CLWP與Dm、µ和Λ等的關聯性。綜整這些特徵,可得知隨著COT和CLWP的增加,Dm顯著增加;然而隨著CER的增加,Dm減小並變得均勻。相反,當CER則顯示NT和log10Nw的單峰趨勢,其峰值為20-30 µm,NT隨COT降低。µ和Λ則隨著CLWP的增加而持續減小,並且趨於恆定。這些結果表明以上雲參數對特定的雨滴參數是助於瞭解暖雲及降水過程的特性及現象。
Warm clouds perform a key role in the system of weather and climate. It has a considerable impact on radiative forcing and also precipitation properties. Knowledge about their raindrop size distribution (RSDs) is useful in realizing rain integral-parameters and in the understanding of precipitation microphysics. Unfortunately, as a result of the discontinuity of spatiotemporal observation, obtaining a detailed process that occurs in warm clouds is still challenging. The characteristics of rain microphysical of warm precipitating clouds on Taiwan Island are still not specifically investigated. The objective of this study is to identify the characteristics of the raindrop size distribution of warm precipitating cloud in Northern Taiwan. This research also aims to reveal how the warm cloud properties relate to the alteration in rainfall intensity and how the changes relate to their drop size distribution in Northern Taiwan during the winter season from December 2017 to January 2018. The observations and analyses are based on the space-borne satellite observation (Himawari-8/9) and in-situ surface Joss-Waldvogel Disdrometer (JWD) datasets.
This study found that warm precipitating clouds observed from optically medium clouds with a preferred value of Cloud Effective Radius (CER) of 20 - 30 µm, Cloud Liquid Water Path (CLWP) of 130 - 400 g m-2, and Cloud Top Pressure (CTP) of 440 – 560 hPa. Its raindrop size features consist of higher concentration of small raindrops rather than middle and large drops with a larger mean weighted diameter (Dm), higher total number concentration (NT), narrower and more-isolated intercept parameter (log10Nw), with smaller and more homogenous of shape (µ) and slope (Λ) parameters as the rain intensity become stronger.
The cloud-precipitation regimes show obvious discriminating features only on specific of the pair of the investigated cloud with the raindrops parameters, such as COT with Dm and NT; CER with Dm, NT, and log10Nw; and CLWP with Dm, µ and Λ. The result shows Dm substantially increase as CLWP increase, whereas it decreases for COT and become homogenous when CER is getting larger. In contrast, NT decreases with COT, while for CER shows a unimodal trend for NT and log10Nw with peaks of 20 - 30 µm. µ and Λ are monotonically decreased and tends to be constant as the CLWP increased. These results indicate the usefulness of these cloud parameters on specific selected raindrop parameters.
Abstract i
摘要 ii
Acknowledgements iv
Table of Contents v
List of Figures vii
List of Tables ix
1.1 Introduction 1
1.2 Motivation 7
1.3 Objectives 9
2.1 Study Area 10
2.2 Datasets 11
2.2.1 Himawari-8/9 Data 11
2.2.2 Disdrometer Data 16
2.3 Calculation of Drop Size Distribution 19
2.4 Data Preprocessing 21
2.4.1 Case Study Selection 21
2.4.2 Data Collocation 23
2.5 Classifications of Warm Rain and Rain Intensity 24
2.6 Statistical Analysis 26
3.1 Cloud Properties Classification and Precipitation Features 28
3.2 The Relationship between Cloud Microphysical Properties and Rain Rate 31
3.3 Relationship of CER and COT in Different Categories of CLWP and
Rainfall Intensity 38
3.4. Raindrop Size Distribution and Precipitation Relationship 41
3.5 Warm Precipitating Cloud Properties against to RSDs Properties 50
4.1 Conclusion 54
4.2 Future Work 58
References 60
Adesina, A.J., Kumar, K.R. and Sivakumar, V., 2016. Aerosol-cloud-precipitation interactions over major cities in South Africa: Impact on regional environment and climate change. Aerosol and Air Quality Research, 16(1), pp.195-211.
Baker, M.B., 1997. Cloud microphysics and climate. Science, 276(5315), pp.1072-1078.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., ..., and Okuyama, A. (2016). An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183.
Bhawar, R.L. and Devara, P.C.S., 2010. Study of successive contrasting monsoons (2001-2002) in terms of aerosol variability over a tropical statio Pune, India. Atmospheric Chemistry and Physics, 10(1), pp.29-37.
Blanchard, D.C. and Spencer, A.T., 1970. Experiments on the generation of raindrop-size distributions by drop breakup. Journal of the Atmospheric Sciences, 27(1), pp.101-108.
Bringi, V.N., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W.L. and Schoenhuber, M., 2003. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. Journal of the Atmospheric Sciences, 60(2), pp.354-365.
Chang, W.Y., Wang, T.C.C. and Lin, P.L., 2009. Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. Journal of Atmospheric and Oceanic Technology, 26(10), pp.1973-1993.
Chen, B., Wang, J. and Gong, D., 2016. Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over East China. Journal of Applied Meteorology and Climatology, 55(3), pp.621-634.
Chen, B., Yang, J. and Pu, J., 2013. Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. Journal of the Meteorological Society of Japan. Ser. II, 91(2), pp.215-227.
Chen, C.S. and Chen, Y.L., 2003. The rainfall characteristics of Taiwan. Monthly Weather Review, 131(7), pp.1323-1341.
Chen, T.C., Yen, M.C., Hsieh, J.C. and Arritt, R.W., 1999. Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan. Bulletin of the American Meteorological Society, 80(11), pp.2299-2312.
Christensen, M.W., Stephens, G.L. and Lebsock, M.D., 2013. Exposing biases in retrieved low cloud properties from CloudSat: A guide for evaluating observations and climate data. Journal of Geophysical Research: Atmospheres, 118(21), pp.12-120.
Comstock, K.K., Wood, R., Yuter, S.E. and Bretherton, C.S., 2004. Reflectivity and rain rate in and below drizzling stratocumulus. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 130(603), pp.2891-2918.
Dhuria, H. L., and Kyle, H. L. (1990). Cloud types and the tropical earth radiation budget. Journal of Climate, 3(12), 1409-1434.
Eyre, J. R., and Woolf, H. M. (1988). Transmittance of atmospheric gases in the microwave region: a fast model. Applied Optics, 27(15), 3244-3249.
Gatlin, P.N., Thurai, M., Bringi, V.N., Petersen, W., Wolff, D., Tokay, A., Carey, L. and Wingo, M., 2015. Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. Journal of Applied Meteorology and Climatology, 54(5), pp.1069-1089.
Giangrande, S.E., Bartholomew, M.J., Pope, M., Collis, S. and Jensen, M.P., 2014. A summary of precipitation characteristics from the 2006–11 northern Australian wet seasons as revealed by ARM disdrometer research facilities (Darwin, Australia). Journal of Applied Meteorology and Climatology, 53(5), pp.1213-1231.
Giangrande, S.E., Wang, D., Bartholomew, M.J., Jensen, M.P., Mechem, D.B., Hardin, J.C. and Wood, R., 2019. Midlatitude oceanic cloud and precipitation properties as sampled by the ARM Eastern North Atlantic Observatory. Journal of Geophysical Research: Atmospheres, 124(8), pp.4741-4760.
Grabowski, W.W. and Wang, L.P., 2013. Growth of cloud droplets in a turbulent environment. Annual Review of Fluid Mechanics, 45, pp.293-324.
Gunn, R. and Kinzer, G.D., 1949. The terminal velocity of fall for water droplets in stagnant air. Journal of Meteorology, 6(4), pp.243-248.
Han, Q., Rossow, W.B. and Lacis, A.A., 1994. Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. Journal of Climate, 7(4), pp.465-497.
Hartmann, D. L., Ockert-Bell, M. E., and Michelsen, M. L., 1992. The effect of cloud type on Earth's energy balance: Global analysis. Journal of Climate, 5(11), 1281-1304.
Hitschfeld, W., Gunn, K.L.S. and Marshall, J.S., 1956. Size Distributions Generated by a Random Process. McGill University, MacDonald Physics Laboratory," Stormy Weather" Research Group.
Hodson, M.C., 1986. Raindrop size distribution. Journal of Climate and Applied Meteorology, 25(7), pp.1070-1074.
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., ..., and Iguchi, T., 2014. The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95(5), 701-722.
Hu, Z. and Srivastava, R.C., 1995. Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. Journal of the Atmospheric Sciences, 52(10), pp.1761-1783.
Janapati, J., Reddy, V., Reddy, K., Lin, P.L. and Liu, C.Y., 2017. A study on raindrop size distribution variability in before and after landfall precipitations of tropical cyclones observed over southern India. Journal of Atmospheric and Solar-Terrestrial Physics, 159, pp.23-40.
Jayalakshmi, J. and Reddy, K.K., 2014. Raindrop size distributions of southwest and northeast monsoon heavy precipitation observed over Kadapa (14° 4′ N, 78° 82′ E), a semi-arid region of India. Current Science, pp.1312-1320.
Jung, S.A., Lee, D.I., Jou, B.J.D. and Uyeda, H., 2012. Microphysical properties of maritime squall line observed on June 2, 2008 in Taiwan. Journal of the Meteorological Society of Japan. Ser. II, 90(5), pp.833-850.
Kawamoto, K., Nakajima, T. and Nakajima, T.Y., 2001. A global determination of cloud microphysics with AVHRR remote sensing. Journal of Climate, 14(9), pp.2054-2068.
Kobayashi, T. and Masuda, K., 2009. Changes in cloud optical thickness and cloud drop size associated with precipitation measured with TRMM satellite. Journal of the Meteorological Society of Japan. Ser. II, 87(4), pp.593-600.
Kobayashi, T., 2007. Significant differences in the cloud droplet effective radius between nonprecipitating and precipitating clouds. Geophysical Research Letters, 34(15).
Kostinski, A.B., 2008. Drizzle rates versus cloud depths for marine stratocumuli. Environmental Research Letters, 3(4), p.045019.
Krishna, U.M., Reddy, K.K., Seela, B.K., Shirooka, R., Lin, P.L. and Pan, C.J., 2016. Raindrop size distribution of easterly and westerly monsoon precipitation observed over Palau islands in the Western Pacific Ocean. Atmospheric Research, 174, pp.41-51.
Kubar, T.L., Hartmann, D.L. and Wood, R., 2009. Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part I: Satellite observations. Journal of the Atmospheric Sciences, 66(10), pp.2953-2972.
Kumar, S.B. and Reddy, K.K., 2013. Rain drop size distribution characteristics of cyclonic and north east monsoon thunderstorm precipitating clouds observed over Kadapa (14.47 N, 78.82 E), Tropical semi-arid region of India. Mausam, 64(1), pp.35-48.
L'Ecuyer, T.S., Berg, W., Haynes, J., Lebsock, M. and Takemura, T., 2009. Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. Journal of Geophysical Research: Atmospheres, 114(D9).
Lau, K.M. and Wu, H.T., 2003. Warm rain processes over tropical oceans and climate implications. Geophysical Research Letters, 30(24).
Lee, M.T., Lin, P.L., Chang, W.Y., Seela, B.K. and Janapati, J., 2019. Microphysical characteristics and types of precipitation for different seasons over North Taiwan. Journal of the Meteorological Society of Japan. Ser. II.
Letu, H., Nagao, T. M., Nakajima, T. Y., Riedi, J., Ishimoto, H., Baran, A. J., ..., and Kikuchi, M., 2018. Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: Capability of the AHI to monitor the DC cloud generation process. IEEE Transactions on Geoscience and Remote Sensing, 57(6), 3229-3239.
Li, J., Huang, H. L., Liu, C. Y., Yang, P., Schmit, T. J., Wei, H., ..., and Menzel, W. P., 2005. Retrieval of cloud microphysical properties from MODIS and AIRS. Journal of Applied Meteorology, 44(10), 1526-1543.
Li, J., Menzel, W. P., and Schreiner, A. J., 2001. Variational retrieval of cloud parameters from GOES sounder longwave cloudy radiance measurements. Journal of Applied Meteorology, 40(3), 312-330.
Liu, C.-Y., Chiu, C.-H., Lin, P.-H., and Min, M., 2020. Comparison of Cloud-Top Property Retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and radiosonde, Journal of Geophysical Research: Atmospheres, 125, e2020JD032683. https://doi.org/10.1029/2020JD032683
Liu, C. Y., Kuo, S. C., Lim, A. H., Hsu, S. C., Tseng, K. H., Yeh, N. C., and Yang, Y. C., 2016. Optimal use of space-borne advanced infrared and microwave soundings for regional numerical weather prediction. Remote Sensing, 8(10), 816.
Liu, C. Y., Li, J., Ho, S. P., Liu, G. R., Lin, T. H., and Young, C. C., 2015. Retrieval of atmospheric thermodynamic state from synergistic use of radio occultation and hyperspectral infrared radiances observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2), 744-756.
Liu, C. Y., Li, J., Weisz, E., Schmit, T. J., Ackerman, S. A., and Huang, H. L., 2008. Synergistic use of AIRS and MODIS radiance measurements for atmospheric profiling. Geophysical Research Letters, 35(21).
Loeb, N. G., Wielicki, B. A., Wong, T., and Parker, P. A., 2009. Impact of data gaps on satellite broadband radiation records. Journal of Geophysical Research: Atmospheres, 114(D11).
Lohmann, U., Tselioudis, G. and Tyler, C., 2000. Why is the cloud albedo—Particle size relationship different in optically thick and optically thin clouds?. Geophysical Research Letters, 27(8), pp.1099-1102.
Marzuki, M., Randeu, W.L., Bringi, V.N., Kozu, T. and Shimomai, T., 2010. Raindrop size distribution parameters of distrometer data with different bin sizes. IEEE Transactions on Geoscience and Remote Sensing, 48(8), pp.3075-3080.
Nakajima, T., King, M.D., Spinhirne, J.D. and Radke, L.F., 1991. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: Marine stratocumulus observations. Journal of the Atmospheric Sciences, 48(5), pp.728-751.
Nakajima, T.Y. and Nakajma, T., 1995. Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. Journal of the Atmospheric Sciences, 52(23), pp.4043-4059.
Narayana Rao, T., Radhakrishna, B., Nakamura, K. and Prabhakara Rao, N., 2009. Differences in raindrop size distribution from southwest monsoon to northeast monsoon at Gadanki. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 135(643), pp.1630-1637.
Niu, S., Jia, X., Sang, J., Liu, X., Lu, C. and Liu, Y., 2010. Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. Journal of Applied Meteorology and Climatology, 49(4), pp.632-645.
Rosenfeld, D. and Gutman, G., 1994. Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmospheric Research, 34(1-4), pp.259-283.
Rosenfeld, D. and Lensky, I.M., 1998. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bulletin of the American Meteorological Society, 79(11), pp.2457-2476.
Rosenfeld, D. and Ulbrich, C.W., 2003. Cloud microphysical properties, processes, and rainfall estimation opportunities. In Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas (pp. 237-258). American Meteorological Society, Boston, MA.
Rossow, W. B., and Schiffer, R. A., 1999. Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society, 80(11), 2261-2288.
Rémillard, J., Kollias, P., Luke, E. and Wood, R., 2012. Marine boundary layer cloud observations in the Azores. Journal of Climate, 25(21), pp.7381-7398.
Sato, Y., Suzuki, K., Iguchi, T., Choi, I.J., Kadowaki, H. and Nakajima, T., 2012. Characteristics of correlation statistics between droplet radius and optical thickness of warm clouds simulated by a three-dimensional regional-scale spectral bin microphysics cloud model. Journal of the atmospheric sciences, 69(2), pp.484-503.
Seela, B.K., Janapati, J., Lin, P.L., Reddy, K.K., Shirooka, R. and Wang, P.K., 2017. A comparison study of summer season raindrop size distribution between Palau and Taiwan, two islands in western Pacific. Journal of Geophysical Research: Atmospheres, 122(21), pp.11-787.
Seela, B.K., Janapati, J., Lin, P.L., Wang, P.K. and Lee, M.T., 2018. Raindrop size distribution characteristics of summer and winter season rainfall over north Taiwan. Journal of Geophysical Research: Atmospheres, 123(20), pp.11-602.
Shao, H. and Liu, G., 2004. Detecting drizzle in marine warm clouds using combined visible, infrared, and microwave satellite data. Journal of Geophysical Research: Atmospheres, 109(D7).
Sharma, S., Konwar, M., Sarma, D.K., Kalapureddy, M.C.R. and Jain, A.R., 2009. Characteristics of rain integral parameters during tropical convective, transition, and stratiform rain at Gadanki and its application in rain retrieval. Journal of Applied Meteorology and Climatology, 48(6), pp.1245-1266.
Stengel, M., Kniffka, A., Meirink, J. F., Lockhoff, M., Tan, J., and Hollmann, R., 2014. CLAAS: the CM SAF cloud property data set using SEVIRI. Atmos. Chem. Phys, 14(8), 4297-4311.
Stephens, G.L. and Haynes, J.M., 2007. Near global observations of the warm rain coalescence process. Geophysical Research Letters, 34(20).
Stevens, B., Lenschow, D.H., Faloona, I., Moeng, C.H., Lilly, D.K., Blomquist, B., Vali, G., Bandy, A., Campos, T., Gerber, H. and Haimov, S., 2003. On entrainment rates in nocturnal marine stratocumulus. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 129(595), pp.3469-3493.
Suh, S.H., You, C.H. and Lee, D.I., 2015. Climatological characteristics of raindrop size distributions within a topographically complex area. Hydrology & Earth System Sciences Discussions, 12(4).
Suzuki, K., Nakajima, T., Nakajima, T.Y. and Khain, A.P., 2010a. A study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of warm clouds with a spectral bin microphysics cloud model. Journal of the Atmospheric Sciences, 67(4), pp.1126-1141.
Suzuki, K., Nakajima, T., Nakajima, T.Y. and Stephens, G.L., 2010b. Effect of the droplet activation process on microphysical properties of warm clouds. Environmental Research Letters, 5(2), p.024012.
Suzuki, K., Stephens, G.L., Van Den Heever, S.C. and Nakajima, T.Y., 2011. Diagnosis of the warm rain process in cloud-resolving models using joint CloudSat and MODIS observations. Journal of the Atmospheric Sciences, 68(11), pp.2655-2670.
Takahashi, H., Suzuki, K. and Stephens, G., 2017. Land–ocean differences in the warm‐rain formation process in satellite and ground‐based observations and model simulations. Quarterly Journal of the Royal Meteorological Society, 143(705), pp.1804-1815.
Tokay, A. and Short, D.A., 1996. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. Journal of Applied Meteorology, 35(3), pp.355-371.
Tokay, A., Bashor, P.G., Habib, E. and Kasparis, T., 2008. Raindrop size distribution measurements in tropical cyclones. Monthly Weather Review, 136(5), pp.1669-1685.
Ulbrich, C.W., 1983. Natural variations in the analytical form of the raindrop size distribution. Journal of Climate and Applied Meteorology, 22(10), pp.1764-1775.
Ushiyama, T., Krishna Reddy, K., Kubota, H., Yasunaga, K. and Shirooka, R., 2009. Diurnal to interannual variation in the raindrop size distribution over Palau in the western tropical Pacific. Geophysical Research Letters, 36(2).
VanZanten, M.C., Stevens, B., Vali, G. and Lenschow, D.H., 2005. Observations of drizzle in nocturnal marine stratocumulus. Journal of the Atmospheric Sciences, 62(1), pp.88-106.
Wallace, J.M. and Hobbs, P.V., 2006. Cloud Microphysics. Atmospheric Science, 2nd Edn., Academic Press, San Diego, pp.209-269.
Wang, D., Yin, J. and Zhai, G., 2015. In-situ measurements of cloud-precipitation microphysics in the East Asian monsoon region since 1960. Journal of Meteorological Research, 29(2), pp.155-179.
Wang, P. K., 2013. Physics and dynamics of clouds and precipitation. Cambridge University Press.
Wen, L., Zhao, K., Zhang, G., Liu, S. and Chen, G., 2017. Impacts of instrument limitations on estimated raindrop size distribution, radar parameters, and model microphysics during Mei-Yu season in East China. Journal of Atmospheric and Oceanic Technology, 34(5), pp.1021-1037.
Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G., and König-Langlo, G., 2013. The global energy balance from a surface perspective. Climate Dynamics, 40(11-12), 3107-3134.
Willis, P.T., 1984. Functional fits to some observed drop size distributions and parameterization of rain. Journal of the Atmospheric Sciences, 41(9), pp.1648-1661.
Wood, R., Kubar, T.L. and Hartmann, D.L., 2009. Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. Journal of the Atmospheric Sciences, 66(10), pp.2973-2990.
Yao, Z., Li, J., Weisz, E., Heidinger, A., and Liu, C. Y., 2013. Evaluation of single field‐of‐view cloud top height retrievals from hyperspectral infrared sounder radiances with CloudSat and CALIPSO measurements. Journal of Geophysical Research: Atmospheres, 118(16), 9182-9190.
Yau, M.K. and Rogers, R.R., 1996. A short course in cloud physics. Elsevier.
Yen, M. C., and Chen, T. C., 2002. A revisit of the Tropical-midlatitude interaction in East Asia caused by cold surges. Journal of the Meteorological Society of Japan. Ser. II, 80(5), 1115-1128.
Yin, J., Wang, D. and Zhai, G., 2013. A comparative study of cloud-precipitation microphysical properties between East Asia and other regions. Journal of the Meteorological Society of Japan. Ser. II, 91(4), pp.507-526.
Zhang, H., Zhang, Y., He, H., Xie, Y. and Zeng, Q., 2017. Comparison of raindrop size distributions in a midlatitude continental squall line during different stages as measured by parsivel over East China. Journal of Applied Meteorology and Climatology, 56(7), pp.2097-2111.
Zuidema, P., Westwater, E.R., Fairall, C. and Hazen, D., 2005. Ship‐based liquid water path estimates in marine stratocumulus. Journal of Geophysical Research: Atmospheres, 110(D20).
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top