( 您好!臺灣時間:2021/05/09 04:19
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Do Thi Tra My
論文名稱(外文):Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics
指導教授(外文):Chun-Ming Huang
外文關鍵詞:Staphylococcus epidermidis (S. epidermidis)Cutibacterium acne (C. acne)Extracellular Electron Transfer (EET)PrebioticProbiotic
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表皮葡萄球菌S. epidermidis是一種皮膚上常見的微生物能為宿主提供許多好處。在我們先前的研究中表明,表皮葡萄球菌ATCC 12228可以作為皮膚益生菌使甘油發酵,普遍認知此發酵反應能自然地發生在人類皮膚上,當發酵後產生短鏈脂肪酸Short-chain fatty acids(SCFA)後,藉由逆轉由UV-B輻射誘導所造成的氧化應激(Oxidative Stress),能阻止致病菌的生長,例如皮膚痤瘡桿菌Cutibacterium acnes或是金黃色葡萄球Staphylococcus aureus。然而益生菌的局部應用仍是一個爭議的話題。一直以來,我們實驗室專注研究從人類皮膚上所分離出的細菌,特別是能與皮膚共生的表皮葡萄球菌,當它作為一種益生菌,研究其可提供的效益以及細菌的生物電位活性,期望尋找一株細菌可用來替代目前FDA批准使用在臨床治療的ATCC 12228。
  我們已從人類皮膚中篩選分離出十多種表皮葡萄球菌菌株,並且發現其中的一種菌株U2,相較於ATCC 12228 而言U2擁有較高的發酵能力與較低的生物膜作用,此現象可降低細菌致病毒力。此外分析由益生質所介導的發酵作用後,能發現U2在通過細胞外電子轉移Extracellular Electron Transfer (EET)後,能釋放更多的電子作為次級代謝產物。
  除了益生菌篩選分析外,在實驗過程中發現一種潛在的益生質-椰油辛酸 Coco-caprylate (LCC),這是一種選擇性發酵誘導物Selective Fermentation Inducer (SFI),相比傳統的甘油發酵而言,LCC能更好地促進發酵過程。我們的研究表明,較好的皮膚益生菌以及最佳的SFI可有益於維護皮膚的微生物組成。
Staphylococcus epidermidis (S. epidermidis) in the skin microbiome provides a huge benefit to the host. Our previous studies demonstrated that S. epidermidis ATCC 12228 served as a skin probiotic that can mediate the glycerol fermentation which is known to naturally co-exists in the human skin to yield short-chain fatty acids (SCFAs) to protect against the growth of pathogenic bacteria such as Cutibacterium acnes or Staphylococcus aureus (strain USA300) and reverse the oxidative stress induced by UV-B radiation. However, the topical application of probiotic bacteria is still a debatable topic. In our study, we have been focusing on commensal bacterium especially S. epidermidis commensal strains that are isolated from human skin to study on their probiotic and electro biotic activity for clinical applications in replacement to FDA approved S. epidermidis (ATCC 12228). We have screened more than 10 different strains of S. epidermidis from human skin and found a commensal bacterium S. epidermidis (U2) which has higher fermentation and lower bio-film role in association to lower virulence than S. epidermidis ATCC 12228. Also, upon prebiotic mediated fermentation they release higher electron as their secondary metabolite via the extracellular electron transfer (EET). Besides the probiotic screening, we also figured out a potential prebiotic selective fermentation inducer (SFI) coco-caprylate (LCC) which can boost the fermentation process better than traditionally used glycerol. Our study reveals the better skin probiotic strain as well as optimum SFI for the beneficial maintenance of skin microbiome.
Abstract i
Acknowledgments ii
Table of contents iii
List of figures v
List of tables v
Abbreviation List vii
1.1.1. Pro-prebiotic - 2 -
1.1.2. Bacterium - 3 -
1.1.3. Fermentation of bacterium - 4 -
1.1.4. Pyruvate dehydrogenase complex - 6 -
1.1.5. Phosphotransacetylase enzyme - 7 -
1.1.6. Intercellular adhesion gene cluster (ica) - 7 -
1.1.7. Electro-Fermentation (EF) - 8 -
3.1. Materials - 10 -
3.1.1. Apparatus or Instruments - 10 -
3.1.2. Reagents - 10 -
3.2. Methods - 11 -
3.2.1. Medium preparation - 11 -
3.2.2. Isolate and identify commensal S. epidermidis - 12 -
3.2.3. Identification of pdh, pta, and ica. - 13 -
3.2.4. Screening probiotic properties. - 14 -
3.2.5. Biofilm detection - 15 -
3.2.6. Detection of skin conductance - 15 -
3.2.7. Minimum bactericidal concentration - 16 -
3.2.8. In vitro Electricity detection. - 16 -
3.2.9. Nanopore sequencing, genome assembly, and annotation - 17 -
4. RESULT - 18 -
4.1. Isolate and identify S. epidermidis commensals - 18 -
4.3. Testing probiotic properties of S. epidermidis. - 21 -
4.4. Biofilm detection. - 22 -
4.5. S. epidermidis produced electricity - 23 -
4.6. Genomic analysis of U2 S. epidermidis. - 25 -
4.7. Identification of new prebiotic selective - 28 -
5. DISCUSSION - 35 -
6. CONCLUSION - 39 -
7. FUTURE WORK - 39 -
Reference - 40 -
1. Chiller, K., B.A. Selkin, and G.J. Murakawa. Skin microflora and bacterial infections of the skin. in Journal of Investigative Dermatology Symposium Proceedings. 2001. Elsevier.
2. Levinson, W., Review of medical microbiology and immunology. 2014: McGraw-Hill Education.
3. Wilson, B.A., A.A. Salyers, D.D. Whitt, and M.E. Winkler, Bacterial pathogenesis: a molecular approach. 2011: American Society for Microbiology (ASM).
4. Arciola, C.R., D. Campoccia, S. Ravaioli, and L. Montanaro, Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Frontiers in cellular and infection microbiology, 2015. 5: p. 7.
5. Heilmann, C., M. Hussain, G. Peters, and F. Götz, Evidence for autolysin‐mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Molecular microbiology, 1997. 24(5): p. 1013-1024.
6. Zhang, Y.Q., S.X. Ren, H.L. Li, Y.X. Wang, G. Fu, J. Yang, Z.Q. Qin, Y.G. Miao, W.Y. Wang, and R.S. Chen, Genome‐based analysis of virulence genes in a non‐biofilm‐forming Staphylococcus epidermidis strain (ATCC 12228). Molecular microbiology, 2003. 49(6): p. 1577-1593.
7. Wang, Y., S. Kuo, M. Shu, J. Yu, S. Huang, A. Dai, A. Two, R.L. Gallo, and C.-M. Huang, Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Applied microbiology biotechnology, 2014. 98(1): p. 411-424.
8. Yang, A.-J., S. Marito, J.-J. Yang, S. Keshari, C.-H. Chew, C.-C. Chen, and C.-M. Huang, A Microtube Array Membrane (MTAM) encapsulated live fermenting Staphylococcus epidermidis as a skin probiotic patch against Cutibacterium acnes. International journal of molecular sciences, 2019. 20(1): p. 14.
9. Zheng, P., K. Wereath, J. Sun, J. van den Heuvel, and A.-P. Zeng, Overexpression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1, 3-propanediol and plasmid stability in Klebsiella pneumoniae. Process Biochemistry, 2006. 41(10): p. 2160-2169.
10. Patel, M.S., N.S. Nemeria, W. Furey, and F. Jordan, The pyruvate dehydrogenase complexes: structure-based function and regulation. Journal of Biological Chemistry, 2014. 289(24): p. 16615-16623.
11. Wolfe, A.J., The acetate switch. Microbiol. Mol. Biol. Rev., 2005. 69(1): p. 12-50.
12. Pankratova, G., D.n. Leech, L. Gorton, and L. Hederstedt, Extracellular electron transfer by the Gram-positive bacterium Enterococcus faecalis. Biochemistry, 2018. 57(30): p. 4597-4603.
13. Finke, N., V. Vandieken, and B.B. Jørgensen, Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiology Ecology, 2007. 59(1): p. 10-22.
14. Edwards, M.J., D.J. Richardson, C.M. Paquete, and T.A. Clarke, Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria. Protein Science, 2019.
15. Shi, L.H., K. Balakrishnan, K. Thiagarajah, N.I.M. Ismail, and O.S. Yin, Beneficial properties of probiotics. Tropical life sciences research, 2016. 27(2): p. 73.
16. Iordache, F., C. Iordache, M.C. Chifiriuc, C. Bleotu, M. Pavel, D. Smarandache, E. Sasarman, V. Laza, M. Bucu, and O. Dracea, Antimicrobial and immunomodulatory activity of some probiotic fractions with potential clinical application. Archiva Zootechnica, 2008. 11(3): p. 41-51.
17. Gibson, G.R. and M.B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of nutrition, 1995. 125(6): p. 1401-1412.
18. Davani-Davari, D., M. Negahdaripour, I. Karimzadeh, M. Seifan, M. Mohkam, S.J. Masoumi, A. Berenjian, and Y. Ghasemi, Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods, 2019. 8(3): p. 92.
19. Mandalari, G., R.M. Faulks, C. Bisignano, K.W. Waldron, A. Narbad, and M.S. Wickham, In vitro evaluation of the prebiotic properties of almond skins (Amygdalus communis L.). FEMS microbiology letters, 2010. 304(2): p. 116-122.
20. Cummings, J.H., G.T. Macfarlane, and H.N. Englyst, Prebiotic digestion and fermentation. The American journal of clinical nutrition, 2001. 73(2): p. 415s-420s.
21. Leonard, S.A. and A. Nowak-Wêgrzyn, Reduced Occurrence of Early Atopic Dermatitis Because of Immunoactive Prebiotics Among Low-Atopy-Risk Infants. Pediatrics, 2011. 128(Supplement 3): p. S138-S139.
22. Moro, G., S. Arslanoglu, B. Stahl, J. Jelinek, U. Wahn, and G. Boehm, A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Archives of disease in childhood, 2006. 91(10): p. 814-819.
23. Hong, K.-B., M. Jeong, K.S. Han, J. Hwan Kim, Y. Park, H.J. Suh, and nutrition, Photoprotective effects of galacto-oligosaccharide and/or Bifidobacterium longum supplementation against skin damage induced by ultraviolet irradiation in hairless mice. International journal of food sciences, 2015. 66(8): p. 923-930.
24. Rowlinson, M.-C., P. LeBourgeois, K. Ward, Y. Song, S.M. Finegold, and D.A. Bruckner, Isolation of a strictly anaerobic strain of Staphylococcus epidermidis. Journal of clinical microbiology, 2006. 44(3): p. 857-860.
25. Kloos, W.E. and M.S.J.A.E.M. Musselwhite, Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. 1975. 30(3): p. 381-395.
26. Bauer, K., A. Ben-Bassat, M. Dawson, V. De La Puente, and J.J.A.E.M. Neway, Improved expression of human interleukin-2 in high-cell-density fermentor cultures of Escherichia coli K-12 by a phosphotransacetylase mutant. Vol. 56. 1990. 1296-1302.
27. Keshari, S., A. Balasubramaniam, B. Myagmardoloonjin, D.R. Herr, I.P. Negari, and C.-M. Huang, Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. International journal of molecular sciences, 2019. 20(18): p. 4477.
28. Uribe-Alvarez, C., N. Chiquete-Félix, M. Contreras-Zentella, S. Guerrero-Castillo, A. Peña, and S. Uribe-Carvajal, Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations. Pathogens and disease, 2016. 74(1).
29. Blandino, A., M. Al-Aseeri, S. Pandiella, D. Cantero, and C. Webb, Cereal-based fermented foods and beverages. Food research international, 2003. 36(6): p. 527-543.
30. Dalile, B., L. Van Oudenhove, B. Vervliet, and K. Verbeke, The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology & Hepatology, 2019: p. 1.
31. Nagpal, R., S. Wang, S. Ahmadi, J. Hayes, J. Gagliano, S. Subashchandrabose, D.W. Kitzman, T. Becton, R. Read, and H. Yadav, Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Scientific reports, 2018. 8(1): p. 1-15.
32. Traisaeng, S., D.R. Herr, H.-J. Kao, T.-H. Chuang, and C.-M. Huang, A derivative of butyric acid, the fermentation metabolite of Staphylococcus epidermidis, inhibits the growth of a Staphylococcus aureus strain isolated from atopic dermatitis patients. Toxins, 2019. 11(6): p. 311.
33. Song, Z.-x., H.-w. He, Y.-t. Fan, and H.-w. Hou, Effects of the inhibitor of pyruvate dehydrogenase multi-enzyme complex on hydrogen production by fermentative microbes. International Journal of Green Energy, 2017. 14(3): p. 330-335.
34. Poole, R.K., Advances in Bacterial Respiratory Physiology. Vol. 61. 2012: Academic Press.
35. Schütze, A., D. Benndorf, S. Püttker, F. Kohrs, and K. Bettenbrock, The Impact of ackA, pta, and ackA-pta Mutations on Growth, Gene Expression and Protein Acetylation in Escherichia coli K-12. Frontiers in Microbiology, 2020. 11: p. 233.
36. Gristina, A.G., Biomaterial-centered infection: microbial adhesion versus tissue integration. Science, 1987. 237(4822): p. 1588-1595.
37. Oliveira, A. and M. Cunha, Bacterial biofilms with emphasis on coagulase-negative staphylococci. Journal of Venomous Animals and Toxins including Tropical Diseases, 2008. 14(4): p. 572-596.
38. Simons, J.W.F., M.D. van Kampen, S. Riel, F. Götz, M.R. Egmond, and H.M. Verheij, Cloning, purification and characterisation of the lipase from Staphylococcus epidermidis: Comparison of the substrate selectivity with those of other microbial lipases. European journal of biochemistry, 1998. 253(3): p. 675-683.
39. Moscoviz, R., J. Toledo-Alarcón, E. Trably, and N. Bernet, Electro-fermentation: how to drive fermentation using electrochemical systems. Trends in biotechnology, 2016. 34(11): p. 856-865.
40. Liu, H., S. Cheng, and B.E. Logan, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental science and technology, 2005. 39(2): p. 658-662.
41. Li, X., Z. Yan, and J. Xu, Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology, 2003. 149(2): p. 353-362.
42. Posada-Quintero, H.F. and K.H. Chon, Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors (Basel), 2020. 20(2).
43. Kao, M.S., S. Huang, W.L. Chang, M.F. Hsieh, C.J. Huang, R.L. Gallo, and C.M. Huang, Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus. Biotechnol J, 2017. 12(4).
44. Wang, Q., A.-A.D. Jones, J.A. Gralnick, L. Lin, and C.R. Buie, Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity. Science advances, 2019. 5(1): p. eaat5664.
45. Christensen, G.J., C.F. Scholz, J. Enghild, H. Rohde, M. Kilian, A. Thürmer, E. Brzuszkiewicz, H.B. Lomholt, and H. Brüggemann, Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC genomics, 2016. 17(1): p. 152.
46. Gill, S.R., D.E. Fouts, G.L. Archer, E.F. Mongodin, R.T. DeBoy, J. Ravel, I.T. Paulsen, J.F. Kolonay, L. Brinkac, and M. Beanan, Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. Journal of bacteriology, 2005. 187(7): p. 2426-2438.
47. Galac, M.R., J. Stam, R. Maybank, M. Hinkle, D. Mack, H. Rohde, A.L. Roth, and P.D. Fey, Complete genome sequence of Staphylococcus epidermidis 1457. Genome Announc., 2017. 5(22): p. e00450-17.
48. MacLea, K.S. and A.M. Trachtenberg, Complete genome sequence of Staphylococcus epidermidis ATCC 12228 chromosome and plasmids, generated by long-read sequencing. Genome Announc., 2017. 5(36): p. e00954-17.
49. Chusri, S., K. Sompetch, S. Mukdee, S. Jansrisewangwong, T. Srichai, K. Maneenoon, S. Limsuwan, and S. Voravuthikunchai, Inhibition of Staphylococcus epidermidis biofilm formation by traditional Thai herbal recipes used for wound treatment. Evidence-Based Complementary and Alternative Medicine, 2012. 2012.
50. Krajmalnik‐Brown, R., Z.E. Ilhan, D.W. Kang, and J.K. DiBaise, Effects of gut microbes on nutrient absorption and energy regulation. Nutrition in Clinical Practice, 2012. 27(2): p. 201-214.
51. Mao, X.-Y., J. Miyake, and S. Kawamura, Screening photosynthesis bacteria for hydrogen production from organic acids. Journal of Fermentation Technology, 1986. 64(3): p. 245-249.
52. Miyake, J. and S. Kawamura, Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 1987. 12(3): p. 147-149.
53. Fluhr, J., R. Darlenski, and C. Surber, Glycerol and the skin: holistic approach to its origin and functions. British Journal of Dermatology, 2008. 159(1): p. 23-34.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔