(34.201.11.222) 您好!臺灣時間:2021/02/25 13:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉飛白
研究生(外文):Fei-Pai Liu
論文名稱:考量碳排放量及時窗限制的城市物流計劃方法
論文名稱(外文):A Planning Method for City Logistics Considering Carbon Emission and Time Windows
指導教授:呂俊德呂俊德引用關係
指導教授(外文):Jun-Der Leu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:127
中文關鍵詞:綠色物流車輛途程問題時窗閒置碳排放
外文關鍵詞:Green logisticsVehicle routing problemTime windowsIdle emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著全球暖化的加劇,環保及永續發展的議題持續受到各國政府與企業的重視。儘管城市物流是支持實體經濟以及虛擬經濟的後端基礎,但其中的貨物運輸對環境產生的負面影響甚鉅,如運輸過程中燃料的消耗及溫室氣體的排放等,且貨物運輸造成的交通壅塞及空氣汙染亦會使城市居住品質下降。此外,隨著及時制度(Just-in-time)及電子商務的重要性日益增加,顧客對於貨物送達時間的要求也越趨嚴格。因此,一個能最小化環境影響並滿足顧客時窗(Time windows)要求的綠色物流(Green logistics)規劃模型是必須的。
本研究提出了一個基於車輛途程問題(Vehicle routing problem)的綠色城市物流模型,規劃目標為在滿足顧客的貨物需求及時窗需求的情況之下,最小化所有送貨車輛的碳排放量。模型中除了考量車輛行駛時所產生的碳排放,更考量了車輛在顧客位置等待時所產生的閒置碳排放,使本研究的規劃模型能適用於運送時需進行溫度控管的貨物上。本研究亦針對此模型提出一個啟發式演算法,並帶入包含100個節點的模擬案例中,與傳統僅以行駛距離、行駛時間作為規劃目標的演算法比較,最後得到本研究的演算法在綠色目標、經濟目標上皆優於傳統演算法的結果。
Following the concern of global warming in recent years, the issues of environmental protection and sustainability have been receiving increasing attention from both governments and businesses. City logistics is the foundation of economy; however, its freight transportation has a considerable negative impact on the environment due to fuel consumptions and greenhouse gas emissions. Freight transportation also causes traffic congestion and air pollution, which may lead to a decrease in the quality of life of urban residents. Furthermore, the growing significance of just-in-time production and e-commerce contributes to the need of satisfying the customers’ increasing demand for shorter delivery time windows. Therefore, the necessity of a green logistics planning model that enables the minimization of the environmental impact and facilitates the adherence to these time windows is evident.
The present research proposes a green city logistics planning model based on the vehicle routing problem (VRP). The goal is to minimize the carbon emissions of all delivery vehicles, on the condition of fulfilling the customers’ demands for goods and adhering to time windows. The model not only considers the emissions of vehicles in motion (hot emissions) but also the emissions of vehicles under idling (idle emissions). Therefore, this model can be applied to cases where a control of the temperature of goods is required. In addition, this research proposes a heuristic algorithm for the model and uses it to solve the benchmark problems with 100 nodes. Lastly, the solution of the created algorithm is compared with the one of a traditional VRP algorithm. The results of this comparison show that the algorithm developed during the present research performs better in both environmental and economic terms.
摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 vi
1. 緒論 1
1.1. 研究動機與目的 1
1.2. 研究範圍與步驟 2
2. 文獻回顧 3
2.1. 問題陳述 3
2.2. 車輛途程問題 5
2.2.1. 容量限制車輛途程問題 6
2.2.2. 兩階層容量限制車輛途程問題 6
2.2.3. 含時窗的車輛途程問題 8
2.2.4. 時間相依車輛途程問題 10
2.3. 綠色車輛途程問題 11
2.3.1. 逆物流車輛途程問題 12
2.3.2. 能源消耗車輛途程問題 12
2.3.3. 汙染途程問題 14
3. 問題定義 16
3.1. 含時窗的綠色城市物流模型 16
3.2. 路段行駛時間計算 20
3.3. 碳排放量計算 25
4. 方法發展 32
4.1. 輔助演算法 32
4.2. 途程建構演算法 39
4.3. 途程改善演算法 44
4.4. 出發時間調整演算法 49
5. 演算法操作 55
5.1. 碳排放量計算演算法操作 55
5.2. 輔助演算法操作 61
5.3. 途程建構演算法操作 70
5.4. 途程改善演算法操作 76
5.5. 出發時間調整演算法操作 87
6. 數值例驗證 96
6.1. 實驗案例發展 96
6.2. 演算法各階段驗證 99
6.3. 與傳統VRPHTW規劃方法之比較 102
6.4. 驗證結果分析 110
7. 結論與後續研究 112
7.1. 結論 112
7.2. 後續研究議題 112
參考文獻 114
American Transportation Research Institute. (2018). Cost of Congestion to the Trucking Industry: 2018 Update. Retrieved August 6, 2019, from https://atri-online.org/wp-content/uploads/2018/10/ATRI-Cost-of-Congestion-to-the-Trucking-Industry-2018-Update-10-2018.pdf.

Bektaş, T., & Laporte, G. (2011). The pollution-routing problem. Transportation Research Part B, 45, 1232-1250.

Bräysy, O., & Gendreau, M. (2005). Vehicle routing problem with time windows, Part I: route construction and local search algorithms. Transportation Science, 39(1), 104-118.

Clarke, G., & Wright, J.W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568-581.

Cordeau, J. F., Laporte, G., Savelsbergh, M. W. P., & Vigo, D. (2007). Vehicle routing. In C. Barnhart & G.
Laporte (Eds.), Transportation (Vol. 14, pp. 367–428). Amsterdam: Elsevier.

Crainic, T.G., Ricciardi, N., & Storchi, G. (2009). Models for evaluating and planning city logistics transportation systems. Transportation Science, 43(4), 432-454.

Crainic, T.G., Ricciardi, N., & Storchi, G. (2009). Models for evaluating and planning city logistics transportation systems. Transportation Science, 43(4), 432-454.

Dantzig, G.B., & Ramer, J.H. (1959). The truck dispatching problem. Management Science, 6, 80-91.

Figliozzi, M.A. (2010). An iterative route construction and improvement algorithm for the vehicle routing problem with soft time windows. Transportation Research Part C, 18, 668-679.

Figliozzi, M.A. (2012). The time dependent vehicle routing problem with time windows: Benchmark problems, an efficient solution algorithm, and solution characteristics, Transportation Research Part E, 48, 616-636.

Hickman, A.J., Hassel, D., Joumard, R., Samaras, Z., & Sorenson, S. (1999). Methodology for calculating transport emissions and energy consumption. Berkshire, U.K.: Transport Research Laboratory.

Huang, Y., Zhao, L., Woensel, T.V., & Gross, J.P. (2017). Time-dependent vehicle routing problem with path flexibility. Transportation Research Part B, 95, 169-195.

Ichoua, S., Gendreau, M., & Potvin, J.Y. (2003). Vehicle dispatching with time-dependent travel times. European Journal of Operational Research, 144, 379-396.

Jepson, M., Spoorendonk, S., & Ropke, S. (2013). A branch-and-cut algorithm for the symmetric two-echelon capacitated vehicle routing problem. Transportation Science, 47(1), 23-37.

Keskin, M., & Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing problem with time windows. Transportation Research Part C, 65, 111-127.

Lecluyse, C., Sörensen, K., & Peremans, H. (2013). A network-consistent time-dependent travel time layer for routing optimization problems. European Journal of Operational Research, 226, 395-413.

Lin, C., Choy, K.L., Ho, G.T.S., Chung, S.H. & Lam, H.Y. (2014). Survey of green vehicle routing problem: Past and future trends. Expert Systems with Applications, 41, 1118-1138.

Malandraki, C., & Daskin, M.S. (1992). Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms. Transportation Science, 26(3), 185-200.

Montoya-Torres, J.R., Franco, J.L., Isaza, S.N., Jiménez, H.F., & Herazo-Padilla, N. (2015). A literature review on the vehicle routing problem with multiple depots. Computers & Industrial Engineering, 79, 115-129.

Perboli G., Tadei, R., & Vigo, D. (2011). The two-echelon capacitated vehicle routing problem: models and math-based heuristics, Transportation Science, 45(3), 364-380.

Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A.L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research, 225, 1-11.

Qian, J., & Eglese, R. (2016). Fuel emissions optimization in vehicle routing problems with time-varying speeds. European Journal of Operational Research, 248, 840-848.

Sbihi, A., & Eglese, R.W. (2007). Combinatorial optimization and green logistics. 4OR: A Quarterly Journal of Operational Research, 5(2), 99-116.

Solomon, M.M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operational Research, 35(2), 254-265.

Taniguchi, E., Thompson, R.G., Yamada, T., & van Duin, R. (2001). City logistics: network modelling and intelligent transport systems. Oxford, U.K.: Elsevier Science.

Ubeda, S., Arcelus, F.J., & Faulin, J. (2011). Green logistics at Eroski: A case study. International Journal of Production Economics, 131, 44-51.

United Nations. (2018). World urbanization prospects: the 2018 revision. Population Divisions, Department of Economic and Social Affairs, United Nations.

United Nations Framework Convention on Climate Change. (2015). Adoption of the Paris Agreement, FCCC/CP/2015/L.9/Rev.1. Retrieved August 23, 2018, from http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

United States Environmental Protection Agency. (2002). Study of Exhaust Emissions from Idling Heavy-Duty Diesel Trucks and Commercially Available Idle-Reducing Devices. Washington, D.C., U.S.: National Service Center for Environmental Publications.

United States Environmental Protection Agency. (2018). Inventory of U.S. greenhouse gas emissions and sinks: 1990-2016. Washington, D.C., U.S.: National Service Center for Environmental Publications.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔