(3.236.122.9) 您好!臺灣時間:2021/05/12 20:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:田洛豪
研究生(外文):Luo-Hao Tien
論文名稱:應用資料科學方法進行醫療手術執行時間預測之研究: 一個支持向量迴歸模型的方法
論文名稱(外文):A Support Vector Regression Method for Surgical Case Duration Prediction Model
指導教授:呂俊德呂俊德引用關係
指導教授(外文):Jun-Der Leu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:71
中文關鍵詞:手術室手術執行時間支持向量回歸機器學習
外文關鍵詞:Operating roomSurgical case durationSupport vector regressionMachine learning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
醫院手術室是醫院裡相當重要的資產,並且手術室的時間管理,對於病患滿意度、員工滿意度或經濟上的指標有重大的影響力。而在相關研究發現對於使用機器學習方法進行手術室管理具有許多潛力,特別是手術執行時間的預測上。故本研究致力於改善手術執行時間預測之方法研究。
本研究運用支持向量迴歸,以台灣某醫學中心之手術資料,建構各科別手術執行時間的預測模型,結果發現在多數外科,麻醉因素有極高的重要性,而病患是否住院,可以作為所有科別共同的手術執行時間預測因子。另外,在模型比較上,無調整參數的支持向量迴歸模型比多元線性迴歸模型,適用於更多科別,特別是平均手術時間高且手術時間標準差大的科別,其平均誤差時間縮短了3分鐘。據此研究結果,院方可運用此模型當作醫務管理中手術排程的參考或是醫療過程手術室時間管理的基礎。
For a hospital, the operating room is a very crucial asset. Time management of the operating room especially has a significant influence on patient satisfaction, employee satisfaction, or economic indicators. Previous researches have indicated that using machine learning methods to improve the management of the operating room has great potentials, especially in the prediction of surgical case duration. So, this research aims at improving the methods of the prediction of surgical case duration.
Support vector regression is used in the research to construct a surgical case duration prediction model based on the surgical data from various departments of a medical center in Taiwan. The results show that anesthesia factors is extremely important for most surgical operations, and hospitalization is one of the common predictors to all departments. Besides, in model comparison, the support vector regression model without adjustment of parameters is more suitable than the multiple linear regression model for most departments; especially for those with high average case duration and large standard deviation of case duration; Based on the research, the average error duration is shortened by 3 minutes. According to the results of the research, this model can be applied to surgical scheduling of medical management, or used as the basis for the time management of operating rooms.
目 錄
一、 緒論 1
1-1 研究背景 1
1-2 研究動機與範圍 1
1-3 論文結構 2
二、 文獻回顧 3
2-1 醫院成本與品質 3
2-2 手術室時間管理 5
2-3 支持向量迴歸 ( Support Vector Regression ) 簡介 10
2-4 多元線性迴歸(Multiple Linear Regression)簡介 15
三、 研究模型之發展 17
3-1 手術室之病患就醫過程分析 18
3-2 資料前處理與變項整理 19
3-3 以支持向量迴歸建構手術時間預測模型 21
3-4 預測模型評估與比較 23
四、 實證結果與分析 25
4-1 案例醫院簡介 25
4-2 案例分析 25
4-3 模型評估與比較 34
五、 結論及建議 51
5-1 模型結果比較 51
5-2 研究貢獻 52
5-3 研究限制 53
5-4 未來研究方向建議 54
參考文獻 55
附錄 58
一、以 Python建構手術時間預測模型 58
Awad, M., & Khanna, R. (2015). Efficient learning machines : Theories, concepts, and applications for engineers and system designers. https://doi.org/10.1007/978-1-4302-5990-9
Baker, K., Sun, H., Harman, A., Poon, K., & Rathmell, J. P. (2016). Clinical performance scores are independently associated with the American Board of Anesthesiology certification examination scores. Anesthesia & Analgesia, 122(6), 1992-1999.
Bellini, V., Guzzon, M., Bigliardi, B., Mordonini, M., Filippelli, S., & Bignami, E. (2020). Artificial intelligence: A new tool in operating room management. Role of machine learning models in operating room optimization. Journal of Medical Systems, 44(1), 20-29.
Bellini, V., Maestroni, U., & Bignami, E. (2019). Surgical block scheduling controlled by a machine: Reality or science fiction?. Journal of Medical Systems, 43(3), 1-2.
Bhatt, A. S., Carlson, G. W., & Deckers, P. J. (2014). Improving operating room turnover time: A systems based approach. Journal of Medical Systems, 38(12), 148-155.
Chen, Y., Gabriel, R. A., Kodali, B. S., & Urman, R. D. (2016). Effect of anesthesia staffing ratio on first-case surgical start time. Journal of Medical Systems, 40(5), 115-120.
Cheng, K., & Lu, Z. (2018). Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression. Computers & Structures, 194(1), 86-96.
Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17(1), 113-126.
Clarke, B., Fokoue, E., & Zhang, H. H. (2009). Principles and theory for data mining and machine learning. https://doi.org/10.1007/978-0-387-98135-2
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/ correlation analysis for the behavioral sciences (3rd ed.). Hillsdale, NJ: Lawrence Erlbaum.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
Devi, S. P., Rao, K. S., & Sangeetha, S. S. (2012). Prediction of surgery times and scheduling of operation theaters in optholmology department. Journal of Medical Systems, 36(2), 415-430.
Dinuzzo, F., Neve, M., Nicolao, G. D., & Gianazza, U. P. (2007). On the representer theorem and equivalent degrees of freedom of SVR. Journal of Machine Learning Research, 8(10), 2467-2495.
Drucker H., Burges C.J.C., Kaufman L., Smola A., & Vapnik V. (1997). Support vector regression machines. In Mozer M.C., Jordan M.I., & Petsche T. (Eds.), Advances in Neural Information Processing Systems 9 (pp. 155-161). Cambridge, MA: MIT Press. Retrieved from https://papers.nips.cc/paper/1238-support-vector-regression-machines
Dupont, F. W., Tung, A., Shahul, S. S., Pohlman, A., Joseph, S., Gottlieb, O., ... & Cutter, T. W. (2019). Transport of critically ill patients by the anesthesia versus the intensive care unit service: A before–after study of operating room workflows. Anesthesia & Analgesia, 129(3), 671-678.
Edelman, E. R., van Kuijk, S. M., Hamaekers, A. E., de Korte, M. J., van Merode, G. G., & Buhre, W. F. (2017). Improving the prediction of total surgical procedure time using linear regression modeling. Frontiers in Medicine, 4(1), 85-90.
Fairley, M., Scheinker, D., & Brandeau, M. L. (2019). Improving the efficiency of the operating room environment with an optimization and machine learning model. Health Care Management Science, 22(4), 756-767.
Ferschl, M. B., Feiner, J., Vu, L., Smith, D., & Rollins, M. D. (2020). A comparison of spinal anesthesia versus monitored anesthesia care with local anesthesia in minimally invasive fetal surgery. Anesthesia & Analgesia, 130(2), 409-415.
Fong, A. J., Smith, M., & Langerman, A. (2016). Efficiency improvement in the operating room. Journal of Surgical Research, 204(2), 371-383.
Han, J., Pei, J., & Kamber, M. (2012). Data mining: Concepts and techniques (3rd ed.). San Francisco, CA, USA: Elsevier.
Johannes, M., Brase, J. C., Fröhlich, H., Gade, S., Gehrmann, M., Fälth, M., ... & Beißbarth, T. (2010). Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients. Bioinformatics, 26(17), 2136-2144.
Mason, S. E., Nicolay, C. R., & Darzi, A. (2015). The use of lean and six sigma methodologies in surgery: A systematic review. The Surgeon, 13(2), 91-100.
Paulson, D.S. (2006). Handbook of regression and modeling: Applications for the clinical and pharmaceutical industries. New York, NY: Chapman & Hall, CRC.
Rambourg, J., Gaspard-Boulinc, H., Conversy, S., & Garbey, M. (2019). A continuum of interfaces to engage surgical staff in efficient collaboration. Journal of Medical Systems, 43(7), 184-192.
Rebala, G., Ravi, A., & Churiwala, S. (2019). An introduction to machine learning. https://doi.org/10.1007/978-3-030-15729-6
ShahabiKargar, Z., Khanna, S., Good, N., Sattar, A., Lind, J., & O’Dwyer, J. (2014). Predicting procedure duration to improve scheduling of elective surgery. In P. Duc-Nghia & P. Seong-Bae, (Eds.), Lecture Notes in Computer Science: Vol. 8862. PRICAI 2014: Trends in Artificial Intelligence (pp. 998-1009). Switzerland: Springer International Publishing. doi:10.1007/978-3-319-13560-1_86
Shahabikargar, Z., Khanna, S., Sattar, A., & Lind, J. (2017). Improved prediction of procedure duration for elective surgery. Health Technology and Informatics, 239(1), 133-138.
Simard, M., Sirois, C., & Candas, B. (2018). Validation of the combined comorbidity index of Charlson and Elixhauser to predict 30-day mortality across ICD-9 and ICD-10. Medical Care, 56(5), 441-447.
Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222.
Soh, K. W., Walker, C., O’Sullivan, M., & Wallace, J. (2020). An evaluation of the hybrid model for predicting surgery duration. Journal of Medical Systems, 44(2), 42-57.
Steinwart, I., Hush, D., & Scovel, C. (2006). An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels. IEEE Transactions on Information Theory, 52(10), 4635-4643.
Stepaniak, P. S., Heij, C., & De Vries, G. (2010). Modeling and prediction of surgical procedure times. Statistica Neerlandica, 64(1), 1-18.
Tsai, M. H., Hall, M. A., Cardinal, M. S., Breidenstein, M. W., Abajian, M. J., & Zubarik, R. S. (2020). Changing anesthesia block allocations improves endoscopy suite efficiency. Journal of Medical Systems, 44(1), 1-9.
Tuwatananurak, J. P., Zadeh, S., Xu, X., Vacanti, J. A., Fulton, W. R., Ehrenfeld, J. M., & Urman, R. D. (2019). Machine learning can improve estimation of surgical case duration: A pilot study. Journal of Medical Systems, 43(3), 44-50.
Zhao, B., Waterman, R. S., Urman, R. D., & Gabriel, R. A. (2019). A machine learning approach to predicting case duration for robot-assisted surgery. Journal of Medical Systems, 43(2), 32-39.
陳姵君,「醫院手術室效能影響因素與效能評估方法之發展」,國立中央大學,碩士論文,民國 102 年。
電子全文 電子全文(網際網路公開日期:20221231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔