(3.238.173.209) 您好!臺灣時間:2021/05/08 16:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孟婷茹
研究生(外文):Ting-Ju Meng
論文名稱:臺灣金門太武山近期閃電熔岩之礦物、微觀構造及化學特徵
論文名稱(外文):The mineralogical, microstructural, and chemical characteristics of Recently Formed Fulgurite in Kinmen, Taiwan
指導教授:郭力維郭力維引用關係
指導教授(外文):Li-Wei Kuo
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球科學學系
學門:自然科學學門
學類:地球科學學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:117
中文關鍵詞:閃電熔岩花崗片麻岩金門太武山閃電
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雲對地閃電(簡稱對地雷)是常見的自然現象,其所夾帶的高能電流及高壓的衝擊波多會對鑿擊地面造成影響。現有文獻說明,對地雷鑿擊到地表,會產生高溫並形成閃電熔岩。對地雷鑿擊之地點(材料)不同,會產生不同型態的閃電熔岩。目前相關的文獻報導,多以鬆散物質(泥或沙)為源之閃電熔岩,以岩石為源之閃電熔岩報導非常稀少。本研究將提供花崗片麻岩質的閃電熔岩特徵,闡述閃電作用對岩石產生之作用。天氣風險公司的觀測資料顯示於民國107年5月7日發生對地雷事件,其閃電的電流峰值高達162 kA,落點位置在金門縣太武山地區,該區為太武山花崗片麻岩。在野外有兩個明顯的雷擊點,推測為此次閃電事件造成,並看到表面有類似燒灼過的痕跡。我們對閃電熔岩使用傳統及同步輻射X光繞射儀、偏光顯微鏡、拉曼光譜儀、場發射掃描式電子顯微鏡、穿透式電子顯微鏡進行分析,以及建立閃電能量模型。結果顯示,閃電熔岩具有一層具孔隙的深黑至棕黑薄玻璃層蓋在原岩之上或是充填裂隙中,且熔岩的表面有些尖角(不利保存),成分也非常不均質,這說明閃電熔岩是近期形成的高溫瞬時事件(時間太久會產生風化而消失)。本研究也發現長石有平面狀特徵,表示該熔岩在具高壓的衝擊波下形成。此外,玻璃層中有發現碳及還原態的鐵,暗示閃電在燒融的過程成造成還原反應,與前述文獻相符合。另外,在閃電熔岩上有硫氧化物的存在,例如:黃鉀鐵礬類、石膏及重晶石等,說明形成後富含鐵及硫的玻璃層提供其所需元素,並與水(降雨)產生反應並藉其分布可知雨水當時的分布。在能量模型中,本研究依據此次的閃電事件的能量計算約會產生3.40至376.30平方米面積(形成厚度50微米的玻璃層),而在野外的燒灼總面積(約為9.5平方米)若是以閃電總能量消散1%來看,其理論值遠大於觀察所得,這暗示許多能量可能藉由閃電通道影響到更遠或是更深的地方。本研究獲得之岩石閃電熔岩特徵(花崗片麻岩與花崗岩),可供日後岩石閃電熔岩之相關研究參考。
Cloud-to-ground lightning (CG lightning) is a common natural phenomenon which comes up with high energetic current and high pressure shock wave, and will form the associated geological evidence including melting and shock lamella on rocks, termed fulgurites. Because lightning strikes on different protolith. Our CG lightning event took place on granitic gneiss in Kimen county, Taiwan, on May. 7th, 2018. In the field, we found two strike points which are done by one lightning event. In our research, we used microanalytical methods including optical microscope, Field-Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TEM), regular and synchrotron X-ray Diffraction (XRD), and Raman spectroscope, and built an energetic model of lightning. Our results show the fulgurites were characterized with a black-to-brown, roughly thin, and heterogeneous glassy crust with some vesicles covering on the host rock or injecting to cracks. Planar fractures derived from high pressures (up to several GPa) were found in k-feldspars suggesting the presence of shock waves. Also, we found some carbon and high reduced-state iron indicate that lightning made some reduction during the melting. Jarosite groups, were recognized to locally deposit on fulgurites, likely suggesting the presence of hydrothermal condition in near-surface exposures after the cessation of the CG lightning. These features which are easier to be weathered and disappear implies the fulgurites are formed recently by a high temperature and transient event. In addition, comparing the modelling result with the field observation (~9.5 m2 in area with the thickness of 50 μm), latter is much less than the former. Our study establishes a reference rock fulgurites data originated from CG lighting on granitic rocks set for future on-site drilling and presents an application of these data for studies of ancient rock fulgurite relicts.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
符號表 x
第一章 緒論 1
1.1 前言 1
1.2 前人研究 4
1.3 研究動機與目的 7
第二章 研究材料與方法 8
2.1 地質背景 8
2.2 閃電事件 11
2.3 研究方法總論 12
2.4 研究材料 13
2.5 實驗儀器與樣品製備 16
2.5.1 野外露頭拍攝儀器 16
2.5.2 薄片製作前置步驟 18
2.5.3 偏光顯微鏡 18
2.5.4 場發掃描式電子顯微鏡搭配X光能譜分析儀(FESEM-EDS) 19
2.5.5 穿透式電子顯微鏡(TEM) 19
2.5.6 拉曼光譜儀 21
2.5.7 X光繞射儀(X-Ray Diffraction, XRD) 22
2.5.8 ImageJ(https://imagej.nih.gov/ij/) 24
第三章 結果 25
3.1 野外觀察及手標本 25
3.2 分析實驗 28
3.2.1 偏光顯微鏡結果 28
3.2.2 掃描式電子顯微鏡之結果 32
3.2.3 穿透式電子顯微鏡之結果 41
3.2.4 拉曼光譜儀分析之結果 43
3.2.5 傳統及原位同步X光繞射儀之結果 47
3.2.6 物理模型 50
第四章 討論 54
4.1 近期閃電事件 54
4.2 近期閃電熔岩與過往文獻中閃電熔岩之特徵比較 56
4.3 富鐵質的玻璃層 59
4.4 硫酸鹽類礦物生成的成因 61
4.5 BR與Ful間之差異 63
4.6 與Chen et al. (2017)的物理模型間之比較 64
第五章 結論及建議 66
參考文獻 68
附錄 A 岩石閃電熔岩相關文獻(1800~迄今,由陳則元提供) 72
附錄 B 偏光顯微鏡結果補充資料 75
附錄 C 表 3.1之EDS分析點位及詳細成分及SEM照片 90
Appel, P.W.U., Abrahamsen, N., and Rasmussen, T.M. (2006) Unusual features caused by lightning impact in West Greenland. Geological Magazine, 143, 737–741.
Carter, E. A., Hargreaves, M. D., Kee, T. P., Pasek, M. A., & Edwards, H. G. (2010). A Raman spectroscopic study of a fulgurite. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1922), 3087-3097.
Chen, J., Elmi, C., Goldsby, D., & Gieré, R. (2017). Generation of shock lamellae and melting in rocks by lightning‐induced shock waves and electrical heating. Geophysical Research Letters, 44(17), 8757-8768.
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., ... & Stewart, M. F. (2003). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research: Atmospheres, 108(D1), ACL-4.
Di Toro, G., Pennacchioni, G., & Teza, G. (2005). Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults. Tectonophysics, 402(1-4), 3-20.
Elmi, C., Chen, J., Goldsby, D., & Gieré, R. (2017). Mineralogical and compositional features of rock fulgurites: A record of lightning effects on granite. American Mineralogist: Journal of Earth and Planetary Materials, 102(7), 1470-1481.
Ende, M., Schorr, S., Kloess, G., Franz, A., and Tovar, M. (2012) Shocked quartz in Sahara fulgurite. European Journal of Mineralogy, 24(3), 499–507.
Essene, E. J. & Fisher, D. C. 1986 Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science 234, 189–193. (doi:10.1126/science.234.4773.189)
Gieré, R., Wimmenauer, W., Müller-Sigmund, H., Wirth, R., Lumpkin, G. R., & Smith, K. L. (2015). Lightning-induced shock lamellae in quartz. American Mineralogist, 100(7), 1645-1648.
Grapes, R.H., and Müller-Sigmund, H. (2009) Lightning-strike fusion of gabbro and formation of magnetite-bearing fulgurite, Cornone di Blumone, Adamello, Western Alps, Italy. Mineralogy and Petrology, 99(1-2), 67–74.
Jones, D. L., G. G. Goyer, and M. N. Plooster (1968), Shock wave from a lightning discharge, J. Geophys. Res., 73(10), 3121–3127.
King, P. L., & McSween, H. Y. (2005). Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars. Journal of Geophysical Research: Planets, 110(E12).
Krider, E. P. & Dawson, G. A. 1968 Peak power and energy dissipation in a single-stroke lightning flash. J. Geophys. Res. 73, 3335–3339. (doi:10.1029/JB073i010p03335)
Lan, C.Y., Chung, S.L. and Mertzman, S.A. (1997) Mineralogy and geochemistry of granitic rocks from Chinmen, Liehyu and Dadan Islands, Fujian. J. Geol. Soc. China, Vol.40, pp.527-558.
Lanzerotti, L. J., Thomson, D. J., Maclennan, C. G., Rinnert, K., Krider, E. P., & Uman, M. A. (1989). Power spectra at radio frequency of lightning return stroke waveforms. Journal of Geophysical Research: Atmospheres, 94(D11), 13221-13227.
Lay, E.H., Jacobson, A.R., Holzworth, R.H., Rodger, C.J., and Dowden, R.L.(2007) Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network. Journal of Geophysical Research-Atmospheres, 112(D13), D13111–D13120.
Li, C. C., Cai, W. P., Cao, B. Q., Sun, F. Q., Li, Y., Kan, C. X., & Zhang, L. D. (2006). Mass synthesis of large, single‐crystal Au nanosheets based on a polyol process. Advanced Functional Materials, 16(1), 83-90.
McLennan, S. M., Bell Iii, J. F., Calvin, W. M., Christensen, P. R., Clark, B. D., De Souza, P. A., ... & Ghosh, A. (2005). Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240(1), 95-121.
Myers, W. M. & Peck, A. B. 1925 A fulgurite from South Amboy, New Jersey. Am. Mineralogist 10, 152–155.
National Research Council. (1972). Digest of Literature on Dielectrics. National Academies.
Navarro-Gonzalez, R., Mahan, S. A., Singhvi, A. K., Navarro-Aceves, R., Rajot, J.-L., Mckay, C. P., Coll, P. & Raulin, F. 2007 Paleoecology reconstruction from trapped gases in a fulgurite from the late Pleistocene of the Libyan Desert. Geology 35, 171–174. (doi:10.1130/g23246a.1)
Ostertag, R. (1983). Shock experiments on feldspar crystals. Journal of Geophysical Research: Solid Earth, 88(S01), B364-B376.
Pasek, M. A., & Hurst, M. (2016). A fossilized energy distribution of lightning. Scientific reports, 6, 30586.
Pasek, M. A., & Pasek, V. D. (2018). The forensics of fulgurite formation. Mineralogy and Petrology, 112(2), 185-198.
Pasek, M. A., Block, K., & Pasek, V. (2012). Fulgurite morphology: a classification scheme and clues to formation. Contributions to Mineralogy and Petrology, 164(3), 477-492.
Pasek, M., & Block, K. (2009). Lightning-induced reduction of phosphorus oxidation state. Nature Geoscience, 2(8), 553-556.
Rakov, V. A. 2008 Triggered lightning. In Lightning: principles, instruments and applications (eds H. D. Betz, U. Schumman & P. Laroche). The Netherlands: Springer, pp. 23–56.
Rakov, V. A., & Uman, M. A. (2003). Lightning: physics and effects. Cambridge university press.
Rakov, V.A. (1999) Lightning makes glass. 29th Annual Conference of the Glass Art Society, p. 45–50, Tampa, Florida.
Saikia, B.J., Parthasarathy, G., Sarmah, N.C., and Baruah, G.D. (2008) Fouriertransform infrared spectroscopic characterization of naturally occurring glassy fulgurites. Bulletin of Materials Science, 31(2), 155–158.
Sponholz, B. (2004). Fulgurites as palaeoclimatic indicators-the proof of fulgurite fragments in sand samples. In Paleoecology of Quaternary Drylands (pp. 73-78). Springer, Berlin, Heidelberg.
Squyres, S. W., & Knoll, A. H. (2005). Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth and Planetary Science Letters, 240(1), 1-10.
Stöffler, D. (1967). Deformation und Umwandlung von Plagioklas durch Stoßwellen in den Gesteinen des Nördlinger Ries. Contributions to Mineralogy and Petrology, 16(1), 51-83.
Uman, M. A. 1964 Peak temperature of lightning. J. Atmos. Terr. Phys. 26, 123–128. (doi:10.1016/0021-9169(64)90113-8)
Uman, M. A., & Krider, E. P. (1989). Natural and artificially initiated lightning. Science, 246(4929), 457-464.
Wang, D., Takagi, N., Watanabe, T., Rakov, V. A., & Uman, M. A. (1999). Observed leader and return‐stroke propagation characteristics in the bottom 400 m of a rocket‐triggered lightning channel. Journal of Geophysical Research: Atmospheres, 104(D12), 14369-14376.
Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American mineralogist, 95(1), 185-187.
Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A., & Kourkoutis, L. F. (2018). Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature, 560(7718), 345-349.
天氣風險公司(https://www.weatherrisk.com/)
林蔚、李寄嵎、楊小青、陳正宏(2011)台灣地質圖說明書-金門地區。臺北市: 經濟部中央地質調查所。
林朝棨(1970)經濟部金門地質礦產測勘隊工作報告,第1-5頁。
林 蔚(2001)華南沿海地區晚燕山期侵入岩漿活動及大地構造意 義。國立台灣大學地質科學研究所博士論文,共 237 頁。
陳培源(1970)金門島及烈嶼地質說明書。經濟部金門地質礦產測勘隊工作報告,第 7-19 頁。
電子全文 電子全文(網際網路公開日期:20220731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔