(3.226.72.118) 您好!臺灣時間:2021/05/12 06:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:Vanisa Syahra
研究生(外文):Vanisa Syahra
論文名稱(外文):Seismic Anisotropy of the Upper- and Lower-Crust in the South Aegean Inferred from Shear-Wave Splitting
指導教授:柯士達柯士達引用關係
指導教授(外文):K.I. Konstantinou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球科學學系
學門:自然科學學門
學類:地球科學學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:63
中文關鍵詞:地震剪力波的分離作用地殼非均向性南愛琴MFAST
外文關鍵詞:Shear-Wave SplittingCrustal AnisotropySouth AegeanMFAST
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隱沒帶是非均向性研究的有趣目標,因為隱沒帶的構造複雜性隨深度變化,並可能產生不同種類的非均向性方向。南愛琴地區是由於非洲岩石圈沿希臘海溝在愛琴海板塊下方隱沒而形成的。為了確定南愛琴地區的地殼非均向性,我們使用了EGELADOS臨時地震網絡的65個地震測站在2005年11月至2007年1月期間記錄的5193次地殼地震來測量了剪力波分離參數(快S波極化方向和時間差)。我們使用了多重濾波器自動分裂技術(MFAST),它是一種自動剪切波分裂技術,可以快速處理數千個事件。在這項研究中,我們使用了A級和B級分裂測量(δt≤0.3 s),總共獲得了3732項高質量測量。整體來說,南愛琴地區大多數站點的快速發展趨勢是北北東-南南西向。對深度變化的分析可看出,在7 – 20 km深度處,非均向性的百分比最多佔地殼非均向性的5%,平均時間差為0.149 s(±0.02 s)。少數位於沿著伯羅奔尼撒南部至喀帕蘇斯島的幾個測站,以應力誘發的非均向性為主要機制,可看出此區域並不受應力場控制。但是,我們觀察到的地殼非均向性與沿伯羅奔尼撒至喀爾巴索的活動斷層走向,以及在基克拉澤斯變質岩心複合體(MCC)掘出過程中延展流動的伸展線和大型穹頂的葉理面一致。因此也可看出,這些地區的主導機制主要受結構控制影響。 我們還將觀測到的地殼非均向性與地幔SKS非均向性進行了比較。我們的快速剪力波方向與SKS分裂測量結果基本一致,表明地殼正在與地幔發生連貫變形。
Subduction zones are interesting targets for anisotropy studies due to their tectonic complexity which varies in depth and might produce different kinds of anisotropy directions. South Aegean was formed as a result of the African lithosphere subducting underneath the Aegean plate along the Hellenic trench. Intending to determine the crustal anisotropy in the South Aegean, we measured shear-wave splitting parameters (fast shear-wave direction and delay time) using 5193 crustal earthquakes recorded by 65 seismic stations of the EGELADOS temporary seismic network during November 2005 – January 2007. We used the Multiple Filter Automatic Splitting Technique (MFAST), the automatic shear-wave splitting that allows the quick processing of thousands of events. In this study, we used A- and B-grade splitting measurements (with δt ≤ 0.3 s), and in total 3732 high-quality measurements were obtained. In general, the fast direction in most of the stations in south Aegean is trending NNE-SSW. Analysis of depth variations shows that the percentage of anisotropy at the depth of 7 – 20 km contributes up to 5% of crustal anisotropy with average delay time of 0.149 s (±0.02 s). Stress-induced anisotropy is dominating mechanism of crustal anisotropy only in few stations along South Peloponnese to Karpathos, suggesting that the regional stress field does not control the area. However, our observed crustal anisotropy is more in agreement with the strike of active faults along Peloponnese to Karpathos, and with the stretching lineation of ductile flow and the foliations of migmatitic dome during the exhumation of metamorphic core complexes (MCC) in the Cyclades. This agreement suggests that the dominating mechanism in these areas is mainly controlled by the structure. We also compared our observed crustal anisotropy with the mantle SKS anisotropy. Our fast shear-wave directions are in general agreement with the SKS splitting measurements, suggesting that the crust is deforming coherently with the mantle.
ABSTRACT i
ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF FIGURES iv
LIST OF TABLES v
CHAPTER I: INTRODUCTION 1
1.1. Tectonic Setting of the South Aegean 1
1.2. Previous works on stress field in the South Aegean area 3
1.3. Aims and structure of this thesis 3
CHAPTER II: DATA DESCRIPTION 7
2.1. The EGELADOS seismic network 7
2.2. Data pre-processing 7
CHAPTER III: SHEAR-WAVE ANISOTROPY MEASUREMENTS 12
3.1. Shear-Wave Splitting 12
3.1.1. Methods: MFAST package 12
3.1.2. Measurement criteria 13
3.2. Map of the crustal anisotropy 15
CHAPTER IV: DISCUSSION AND CONCLUSIONS 24
4.1. Depth distribution of anisotropy 24
4.2. Possible causes of crustal anisotropy 25
4.2.1. Stress-induced anisotropy 25
4.2.2. Structural anisotropy 26
4.3. Comparison between crustal anisotropy and mantle anisotropy 27
4.4. Conclusions 28
REFERENCES 37
Appendix A 43
Appendix B 45
Appendix C 49
Appendix D 51
Almqvist, B. S. & Mainprice, D., 2017. Seismic properties and anisotropy of the continental crust: predictions based on mineral texture and rock microstructure. Rev. Geophys. 55, 367-433. doi:10.1002/2016RG000552.
Angelier, J., Lyberis, N., Le Pichon, X., Barrier, E., & Huchon, P., 1982. The tectonic development of the Hellenic Arc and the Sea of Crete: a synthesis. Tectonophysics 86(1-3), 159-196. doi:10.1016/0040-1951(82)90066-X.
Aster, R. C. & Shearer, P. M., 1992. Initial shear wave particle motions and stress constraints at the Anza Seismic Network. Geophys. J. Int. 108(3), 740–748. doi:10.1111/j.1365-246X.1992.tb03465.x.
Audoine, E., 2002. Upper mantle and crustal seismic anisotropy across the Pacific‐Australian plate boundary, New Zealand. Ph.D. thesis, Victoria University of Wellington, Wellington.
Barruol, G. & Kern, H., 1996. Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the Ivrea Zone—Experimental and calculated data. Phys. Earth Planet. Inter. 95(3), 175-194. doi:10.1016/0031-9201(95)03124-3.
Berens, P., 2009. CircStat: A MATLAB Toolbox for Circular Statistics. J. Stat. Softw. 31(10), 1-21. doi:10.18637/jss.v031.i10.
Biryol, C. B., Beck, S. L., Zandt, G. & Ozacar, A. A., 2011. Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys. J. Int. 184, 1037-1057. doi:10.1111/j.1365-246X.2010.04910.x.
Bohnhoff, M., Harjes, H.-P. & Meier, T., 2005. Deformation and stress regimes in the Hellenic subduction zone from focal mechanisms. J. Seismol. 103, 341-366. doi:10.1007/s10950-005-8720-5.
Boness, N. L. & Zoback, M. D., 2004. Stress‐induced seismic velocity anisotropy and physical properties in the SAFOD Pilot Hole in Parkfield, CA. Geophys. Res. Lett. 31(15), L15S17. doi:10.1029/2003GL019020.

Boness, N. L. & Zoback, M. D., 2006. Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology 34(10), 825–828. doi: 10.1130/G22309.1.
Brocher, T. M. & Christensen, N. I., 1990. Seismic anisotropy due to preferred mineral orientation observed in shallow crustal rocks in southern Alaska. Geology 18(8), 737-740. doi:10.1130/0091-7613(1990)018<0737:SADTPM>2.3.CO;2.
Brune, J. N., Mekala, G. & Zeng, Y., 1995. Evidence for anisotropy in the super-thick sedimentary basin, Bay of Bengal. Proc. Indian Acad. Sci. (Earth and Planet. Sci.) 104, L147–L155. doi:10.1007/BF02842280.
Brun, J.-P. & Sokoutis, D., 2010. 45 m.y. of Aegean crust and mantle flow driven by trench retreat. Geology 38(9), 815–818. doi:10.1130/G30950.1.
Brüstle, A., 2012. Seismicity of the eastern Hellenic Subduction Zone. Ph.D. thesis, Fakultät für Geowissenschaften, Ruhr-Universität, Bochum.
Caputo, R. & Pavlides, S., 2013. The Greek Database of Seismogenic Sources (GreDaSS), Version 2.0.0: A compilation of potential seismogenic sources (Mw>5.5) in the Aegean region. doi:10.15160/unife/gredass/0200.
Cochran, E., Li, Y. & Vidale, J., 2006. Anisotropy in the shallow crust observed around the San Andreas fault before and after the 2004 M6.0 Parkfield earthquake. Bull. Seism. Soc. Am. 96(4B), 364-375. doi:10.1785/0120050804.
Cochran, E. S., Vidale, J. E. & Li, Y., 2003. Near-fault anisotropy following the Hector Mine earthquake. J. Geophy. Res. Solid Earth 108(B9), 2436. doi:10.1029/2002JB002352.
Cossette, É., Audet, P., Schneider, D. & Grasemann, B., 2016. Structure and anisotropy of the crust in the Cyclades, Greece, using receiver functions constrained by in situ rock textural data. J. Geophys. Res. Solid Earth 121(4), 2661– 2678. doi:10.1002/2015JB012460.
Crampin, S., 1994. The fracture criticality of crustal rocks. Geophys. J. Int. 118, 428-438. doi:10.1111/j.1365-246X.1994.tb03974.x.
Crampin, S., 1999. Calculable fluid–rock interactions. J. Geol. Soc. 156, 501-514. doi:10.1144/gsjgs.156.3.0501.

Crampin, S. & Peacock, S., 2008. A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation. Wave Motion 45(6), 675-722. doi:10.1016/j.wavemoti.2008.01.003.
Crampin, S., Peacock, S., Gao, Y. & Chastin, S., 2004. The scatter of time-delays in shear-wave splitting above small earthquakes. Geophys. J. Int. 156, 39-44. doi:10.1111/j.1365-246X.2004.02040.x.
Crotwell, H., Owens, T. & Ritsema, J., 1999. The TauP Toolkit: Flexible Seismic Travel-Time and Raypath Utilities. Seismol. Res. Lett. 70, 154-160. doi:10.1785/gssrl.70.2.154.
Çubuk-Sabuncu, Y., Taymaz, T. & Fichtner, A., 2017. 3-D crustal velocity structure of western Turkey: Constraints from full-waveform tomography. Phys. Earth Planet. Inter. 270, 90-112. doi:10.1016/j.pepi.2017.06.014.
Endrun, B., Lebedev, S., Meier, T., Tirel , C., & Friederich , W., 2011. Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. Nature Geosci. 4, 203–207. doi:10.1038/ngeo1065.
Engdahl, E., Van Der Hilst, R. & Buland, R., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 88(3), 722 - 743.
Evangelidis, C., Liang, W.-T., Melis, N. & Konstantinou, K., 2011. Shear wave anisotropy beneath the Aegean inferred from SKS splitting observations. J. Geophys. Res. Solid Earth 116(B4), 1-14. doi:10.1029/2010JB007884.
Evans, M. S., Kendall, J. & Willemann, R. J., 2006. Automated SKS splitting and upper‐mantle anisotropy beneath Canadian seismic stations. Geophys. J. Int. 165(3), 931–942. doi:10.1111/j.1365-246X.2006.02973.x.
Friederich, W., & Meier, T., 2005. EGELADOS project 2005/07, RUB Bochum, Germany. Deutsches GeoForschungsZentrum GFZ. doi:10.14470/M87550267382.
Gerst, A., 2003. Temporal changes in seismic anisotropy as a new eruption forecasting tool?. M. Sc. thesis, Victoria University of Wellington, Wellington.
Hudson, J., 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. Int. 64(1), 133-150. doi:10.1111/j.1365-246X.1981.tb02662.x.
Hudson, J. A., 2000. The effect of fluid pressure on wave speeds in a cracked solid. Geophys. J. Int. 143(2), 302–310. doi:10.1046/j.1365-246X.2000.01239.x.
Jolivet, L. & Brun, J., 2010. Cenozoic geodynamic evolution of the Aegean region. Int. J. Earth Sci. 99, 109–138. doi:10.1007/s00531-008-0366-4.
Jolivet, L., Faccenna, C. & Piromallo, C., 2009. From mantle to crust: Stretching the Mediterranean. Earth Planet. Sci. Lett. 285(1-2), 198-209. doi:10.1016/j.epsl.2009.06.017.
Jolivet, L., Facenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., . . . Driussi, O., 2013. Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics 597-598, 1-33. doi:10.1016/j.tecto.2012.06.011.
Jolivet, L., Famin, V., Mehl, C., Parra, T., Aubourg, C., Hebert, R., & Philipot, P., 2004. Strain localization during crustal-scale boudinage to form extensional metamorphic domes in the Aegean Sea. Geol. Soc. Am. 380, 185-210. doi:10.1130/0-8137-2380-9.185.
Jolivet, L., Lecomte, E., Huet, B., Denele, Y., Lacombe, O., Labrousse, L., . . . Mehl, C., 2010. The North Cycladic Detachment System. Earth Planet. Sci. Lett. 289, 87-104. doi:10.1016/j.epsl.2009.10.032.
Kaneshima, S., 1990. Origin of crustal anisotropy: Shear Wave splitting studies in Japan. J. Geophys. Res. Solid Earth 95(B7), 11121– 11133. doi:10.1029/JB095iB07p11121.
Kapetanidis, V. & Kassaras, I., 2019. Contemporary crustal stress of the Greek region deduced from earthquake focal mechanisms. J. Geodyn. 123, 55-82. doi:10.1016/j.jog.2018.11.004.
Konstantinou, K., Mouslopoulou, V., Liang, W.-T., Heidbach, O., Oncken, O., & Suppe, J., 2017. Present‐day crustal stress field in Greece inferred from regional‐scale damped inversion of earthquake focal mechanisms. J. Geophys. Res. Solid Earth 122, 506-523. doi:10.1002/2016JB013272.
Laigle, M., Hirn, A., Sachpazi, M. & Clement, C., 2002. Seismic coupling and structure of the Hellenic subduction zone in the Ionian Islands region. Earth Planet. Sci. Lett. 200, 243-253. doi:10.1016/S0012-821X(02)00654-4.
Laigle, M., Sachpazi, M. & Hirn, A., 2004. Variation of seismic coupling with slab detachment and upper plate structure along the western Hellenic subduction zone. Tectonophysics 391, 85-95. doi:10.1016/j.tecto.2004.07.009.
Lomax, A., J. Virieux, P. Volant and C. Berge, 2000. Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations, in Advances in Seismic Event Location Thurber, C.H., and N. Rabinowitz (eds.), Kluwer, Amsterdam, 101-134.

Maher, S. & Kendall, J.-M., 2018. Crustal anisotropy and state of stress at Uturuncu Volcano, Bolivia, from shear-wave splitting measurements and magnitude–frequency distributions in seismicity. Earth Planet. Sci. Lett. 495, 38-49. doi:10.1016/j.epsl.2018.04.060.
Makropoulos, K. C. & Burton, P. W., 1984. Greek Tectonics and Seismicity. Tectonophysics 106, 275-304. doi:10.1016/0040-1951(84)90181-1.
Mardia, K. & Jupp, P., 2000. Directional Statistics. Hoboken, New Jersey: John Wiley.
Matcham, I., Savage, M. & Gledhill, K., 2000. Distribution of seismic anisotropy in the subduction zone beneath the Wellington region, New Zealand. Geophys. J. Int. 140(1), 1–10. doi:10.1046/j.1365-246x.2000.00928.x.
McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., . . . Veis, G., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophy. Res. Solid Earth 105(B3), 5695-5719. doi:10.1029/1999JB900351.

Meier, T., Becker, D., Endrun, B., Rische, M., Bonhoff, M., Stockher, B., & Harjes, H.-P., 2007. A model for the Hellenic subduction zone in the area of Crete based on seismological investigations. Geol. Soc. London Spec. Publ. 291, 183-199. doi:10.1144/SP291.9.
Menant, A., Jolivet, L. & Vrielynck, B., 2016. Kinematic reconstructions and magmatic evolution illuminating crustaland mantle dynamics of the eastern Mediterranean region since the late Cretaceous. Tectonophysics 675, 103-140. doi:10.1016/j.tecto.2016.03.007.
Meulenkamp, J., Wortel, M., Van Wamel, W., Spakman, W., & Strating, E. H., 1988. On the Hellenic subduction zone and the geodynamic evolution of Crete since the late Middle Miocene. Tectonophysics 146, 203-215. doi:10.1016/0040-1951(88)90091-1.
Okaya, D., Vel, S. S., Song, W. J. & Johnson, S. E., 2018. Modification of crustal seismic anistropy by geological structures ("structural geometric anisotropy"). Geosphere 15(1), 146-170. doi:10.1130/GES01655.1.
Papazachos, B., Karakostas, V., Papazachos, C. & Scordilis, E., 2000. The geometry of the Wadati–Benioff zone and lithospheric kinematics in the Hellenic arc. Tectonophysics 319, 275–300. doi:10.1016/S0040-1951(99)00299-1.
Papazachos, C., Hatzidimitriou, P., Panagiotopoulos, D. & Tsokas, G., 1995. Tomography of the crust and upper mantle in southeast Europe. J. Geophys. Res. Solid Earth 100(B7), 12405-12422. doi:10.1029/95JB00669.

Papazachos, C. & Nolet, G., 1997. P and S deep velocity structure of the Hellenic area obtained by robust nonlinear inversion of travel times. J. Geophys. Res. Solid Earth 102(B4), 8349-8367. doi:10.1029/96JB03730.

Peng, Z. & Ben-Zion, Y., 2004. Systematic analysis of crustal anisotropy along the Karadere-Düzce branch of the North Anatolian Fault. Geophys. J. Int. 159, 253-274. doi:10.1111/j.1365-246X.2004.02379.x.
Rabillard, A., Jolivet, L., Arbaret, L., Bessière, E., Laurent, V., Menant, A., . . . Beaudoin, A., 2018. Synextensional Granitoids and Detachment Systems Within Cycladic Metamorphic Core Complexes (Aegean Sea, Greece): Toward a Regional Tectonomagmatic Model. Tectonics 37, 2328–2362. doi:10.1029/2017TC004697.
Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., & Vernant, P., 2009. Geodetic constraints on the tectonic evolution of the Aegean region and strain. Tectonophysics 488, 22–30. doi:10.1016/j.tecto.2009.05.027.
Savage, M., 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?. Rev. Geophys. 37, 65-106. doi:10.1029/98RG02075.
Savage, M., Shih, X. & Meyer, R., 1989. Shear-wave anisotropy of active tectonic regions via automated S-wave polarization analysis. Tectonophysics 165, 278-292. doi:10.1016/0040-1951(89)90053-X.
Savage, M., Wessel, A., Teanby, N. A. & Hurst, . A. W., 2010. Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand. J. Geophys. Res. Solid Earth 115(B2), B12321. doi:10.1029/2010JB007722.
Silver, P. & Chan, W., 1991. Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res. Solid Earth 96(B10), 16429-16454. doi:10.1029/91JB00899.
Tarantola, A. & Valette, B., 1982. Inverse problems = quest for information. J. Geophys. 50(1), 159-170.
Teanby, N., Kendall, J.-M. & van der Baan, M., 2004. Automation of shear‐wave splitting measurements using cluster analysis. Bull. Seismol. Soc. Am. 94, 453–463. doi:10.1785/0120030123.

ten Veen, J. & Meijer, P., 1998. Late Miocene to recent tectonic evolution of Crete (Greece): geological observations and model analysis. Tectonophysics 298, 191-208. doi:10.1016/S0040-1951(98)00184-X.
ten Veen, J. & Postma, G., 1999. Roll-back controlled vertical movements of outer-arcbasins of the Hellenic subduction zone (Crete, Greece). Basin Res. 11, 243–266. doi:10.1046/j.1365-2117.1999.00098.x.
Weiss, T., Siegesmund, S., Rabbel, W., Bohlen, T., & Pohl, M., 1999. Seismic velocities and anisotropy of the lower continental crust: a review. Pure Appl. Geophys. 156, 97-122. doi:10.1007/978-3-0348-8670-3_6.
Wessel, A., 2007. Automatic shear wave splitting measurements at Mt.Ruapehu volcano, New Zealand, Wellington. M.Sc. thesis, Victoria University of Wellington, Wellington.
Wortel, M. J. R. & Spakman, W., 2000. Subduction and slab detachment in the Mediterranean - Carpathian region. Science 290, 1910-1917. doi:10.1126/science.290.5498.1910.

Wüstefeld, A. & Bokelmann, G., 2007. Null Detection in Shear-Wave Splitting Measurements. Bull. Seismol. Soc. Am. 97(4), 1204–1211. doi:10.1785/0120060190.
Zhang, Z. & Schwartz, S., 1994. Seismic anisotropy in the shallow crust of the Loma Pireta segment of the San Andreas Fault System. J. Geophys. Res. Solid Earth 99(B5), 9651-9661. doi:10.1029/94JB00241.
Zinke, J. C. & Zoback, M. K., 2000. Structure-Related and Stress-Induced Shear-Wave Velocity Anisotropy: Observations from Microearthquakes near the Calaveras Fault in Central California. Bull. Seismol. Soc. Am. 90(5), 1305–1312. doi:10.1785/0119990099.
Zoback, M., 1992. First- and second-order pattern of stress in the Lithosphere: the World Stress Map Project. J. Geophys. Res. Solid Earth 97(B8), 11703-11728. doi:10.1029/92JB00132.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔