(3.238.173.209) 您好!臺灣時間:2021/05/12 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張嘉文
研究生(外文):Chia-Wen Chang
論文名稱:雙金屬鉑鈀及三金屬鉑鈀基奈米團簇觸媒應用 於析氫反應之研究
論文名稱(外文):The Hydrogen Evolution Reaction Performance of Bimetallic Pt x Pd y and Trimetallic PtPdM Nanoclusters Catalysts
指導教授:王冠文王冠文引用關係
指導教授(外文):Kuan-Wen Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:92
中文關鍵詞:析氫反應鉑鈀觸媒奈米團簇單原子質量活性穩定性計時電流法
外文關鍵詞:hydrogen evolution reaction (HER)PtPd catalystsnanoclusterssingle atomsmass activitystabilitychronoamperometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白金基的奈米顆粒(nanoparticles, NPs)由於優異的效能而被應用於析氫反應(hydrogen evolution reaction, HER),但是由於白金的高成本以及白金奈米顆粒的利用率較低,而在析氫應用上受到限制。因此降低白金奈米顆粒的尺寸以及提高其利用率為析氫應用的關鍵。為了解決上述問題,本研究以沉澱沉積法(deposition-precipitationmethod) 製備碳支撐的 Pt-奈米團簇(nanocluster, NCs)、Pt-單原(single atoms, SAs),Pd-NCs、Pd-SAs,PtxPdy-NCs(x/y= 1/2, 1/1,及2/1),以及PtPdM-NCs(M= Sn 或 Ni)。所製備觸媒之電化學性質、形貌、結構、表面組成、化學組成以及觸媒微結構分別使用旋轉盤電極 (rotating disk electrode, RDE)、高角度環形暗場相掃描電子顯微鏡(high angle annular dark-Field scanning transmission electron microscopy, HAADF STEM)/高 解 析穿透式電子顯微鏡(high resolution transmission electron microscopy, HR-TEM)、X光繞射儀(X-ray diffraction, XRD)、光電子能譜儀(X-ray photoelectron spectroscopy, XPS)、感應耦合電漿原子發射光譜分析儀(inductively coupled plasma-optical emission spectrometer, ICP-OES)以及X光吸收光譜(X-ray absorption spectroscopy, XAS)等儀器鑑定。本研究為三個部分,在第一部份製備 Pt-NCs、Pt-NCs、Pd-NCs、以及Pd-SAs 並與Pt-NPs及Pd-NPs 比較其HER效能,其中又以Pt-NCs以及Pt-SAs展示了最佳的HER效能,其質量活性在-0.05 V的電位下分別為1.3及10.6 A/mgPt,優於Pt-NPs (在-0.05 V的質量活性為0.3 A/mgPt ),此乃因奈米團簇及單原子具有較高白金利用率。但是Pt-NCs以及Pt-SAs在經過12小時計時電流試驗後,其質量活性的衰退分別為39以及65%。為了提升觸媒之HER穩定性,在第二部分的研究製備了雙金屬PtxPdy-NCs。其中又以PtPd-NCs展示了最佳的HER穩定度,其質量活性及其在12小時的計時電流試驗後的衰退分別為9.56 A/mgPt 以及19 %,此結果說明Pd的添加以及類核/殼結構可以顯著的增加Pt基觸媒的穩定度。為了近一步提升觸媒的穩定度,本研究製備了三元PtPdM-NCs觸媒,其中又以PtPdNi-NCs具有最佳的穩定度,其質量活性在經過12小計時電流試驗後衰退12 %。
Pt and Pt-based nanoparticles (NPs) are wildly used as the electrocatalysts for the hydrogen evolution reaction (HER). However, the application of the Pt-based catalysts has the limitation due to its high cost and low utilization of Pt. Therefore, downsizing the catalysts is the key factor for the promotion of the HER performance. In order to solve those problem, in this study, carbon-supported Pt-nanoclusters (NCs), Pd-NCs, Pt-single atoms (SAs), Pd-SAs, PtxPdy-NCs (x/y= 1/2, 1/1, and 2/1), and PtPdM-NCs (M= Sn or Ni) are prepared by deposition-precipitation method. The electrochemical properties, morphologies (dark/ bright-fields), structures, surface compositions, chemical compositions and the microstructure of the catalysts are analyzed by rotating disc electrode (RDE), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)/high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Inductively coupled plasma‒optical emission spectroscopy (ICP-OES), and X-ray absorption spectroscopy (XAS), respectively.
This study is divided into three parts. In the first part, Pt-NCs, Pd-NCs, Pt-SAs, and Pd-SAs are synthesized and their HER performance are compared with those of Pt-NPs and Pd-NPs. Pt-NCs and Pt-SAs exhibit the excellent HER performance with the mass activity at -0.05 V (MA0.05) of 1.3 and 10.6 A/mgPt, better than Pt-NPs (with MA0.05 of 0.3 A/mgPt) due to the small size and high Pt utilization. However, after chronoamperometry (CA) test for 12 hours, Pt-NCs and Pt-SAs show poor HER stability with the MA0.05 decay of 39 and 65 %, respectively.
In order to improve the HER stability, in the second part the bimetallic PtxPdy-NCs are prepared, and the PtPd-NCs exhibit the excellent HER performance with the MA0.05 and MA0.05 decay of 9.57 A/mgPt and 19 %, respectively, showing that the Pd addition can improve the HER stability.
In the third part, the PtPdM-NCs are prepared to further improve the HER stability, and the PtPdNi-NCs show the best HER stability with the MA0.05 decay of 12 %.
摘要 I
Abstract III
致謝 V
Table of Contents IX
List of Figures XII
List of Table XV
Chpater 1 Introduction 1
1.1 The mechanism of HER 2
1.2 The kinetics of HER 4
1.3 The Pt-based eletrocatalysts and size-dependent HER performance 7
1.4 Motivation and approach 13
Chpater 2 Experimental Section 14
2.1 Preparation of catalysts 14
2.1.1 Preparation of carbon-supported Pt-SAs, Pt-NCs, Pd4-SAs, and Pd-NCs catalysts 14
2.1.2 Preparation of carbon-supported PtxPdy-NCs catalysts 14
2.1.3 Preparation of carbon-supported PtPdM catalysts 18
2.2 Characterization of catalysts 20
2.2.1 Inductively coupled plasma‒optical emission spectroscopy (ICP-OES) 20
2.2.2 X-ray diffraction (XRD) 20
2.2.3 X-ray absorption spectroscopy (XAS) 20
2.2.4 High-resolution transmission electron microscopy (HR-TEM) 23
2.2.5 X-ray photoelectron spectroscopy (XPS) 23
2.2.6 Cyclic voltammetry (CV) 24
2.2.7 HER performance 24
2.2.8 Chronoamperometry (CA) 25
2.2.9 Electrochemical Impedance Spectroscopy (EIS) 25
Chpater 3 Results and Discussion 27
3.1 The HER performance of the Pt and Pd NPs, NCs, and SAs. 27
3.1.1 ICP-OEC and CV characterizations 27
3.1.2 LSV characterization 27
3.1.3 Summary 31
3.2 The HER performance of the PtxPdy-NCs catalysts. 34
3.2.1 ICP-OES and HR-TEM characterizations 34
3.2.2 XRD characterization 34
3.2.3 XAS characterization 39
3.2.4 XPS characterization 47
3.2.5 CV characterization 47
3.2.6 LSV and CA characterization 51
3.2.7 EIS characterization 54
3.2.8 Summary 58
3.3 The HER performance of the PtPdM-NCs catalysts. 60
3.3.1 ICP-OES and HR-TEM characterizations 60
3.3.2 XRD characterizations 60
3.3.3 CV characterization 60
3.3.4 LSV and CA characterization 65
3.3.5 Summary 69
Chpater 4 Conclusions 72
Reference 73
1. I. Chorkendorff and J. W. Niemantsverdriet, Concepts of modern catalysis and kinetics. 2017: John Wiley & Sons.
2. R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, Science, 2011, 334, 1256-1260.
3. R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, and N. M. Markovic, Nat. Mater., 2012, 11, 550-557.
4. B. Conway and B. Tilak, Electrochimi. Acta, 2002, 47, 3571-3594.
5. A. Kahyarian, B. Brown, and S. Nesic, J. Electrochem. Soc., 2017, 164, 365-374.
6. J. Wang, H. Zhang, and X. Wang, Small Methods, 2017, 1, 1700118.
7. B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, and T. Zhang, Nat. Chem., 2011, 3, 634.
8. S. Abbet, A. Sanchez, U. Heiz, W.-D. Schneider, A. M. Ferrari, G. Pacchioni, and N. Rösch, J. Am. Chem. Soc., 2000, 122, 3453-3457.
9. A. Lasia, Int. J. Hydrog. Energy, 2019, 44, 19484-19518.
10. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. 2nd ed. 2000: Wiley.
11. P. Quaino, F. Juarez, E. Santos, and W. Schmickler, Beilstein J. Nanotechnol., 2014, 5, 846-854.
12. S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem., 1972, 39, 163-184.
13. P. Wu, P. Du, H. Zhang, and C. Cai, Phys. Chem. Chem. Phys., 2015, 17, 1441-1449.
14. D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R. W. Birkmire, and J. G. Chen, Angew. Chem. Int. Ed., 2010, 49, 9859-9862.
15. X. F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, and T. Zhang, Acc. Chem. Res., 2013, 46, 1740-1748.
16. S. F. Hackett, R. M. Brydson, M. H. Gass, I. Harvey, A. D. Newman, K. Wilson, and A. F. Lee, Angew. Chem. Int. Ed., 2007, 46, 8593-8596.
17. Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, Science, 2003, 301, 935-938.
18. M. Yang, L. F. Allard, and M. Flytzani Stephanopoulos, J. Am. Chem. Soc., 2013, 135, 3768-3771.
19. X. Zhang, H. Shi, and B. Q. Xu, Angew. Chem. Int. Ed., 2005, 44, 7132-7135.
20. R. Van Hardeveld and F. Hartog, Surf. Sci. Rep., 1969, 15, 189-230.
21. N. Lopez, T. Janssens, B. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, and J. K. Nørskov, J. Catal., 2004, 223, 232-235.
22. M. Valden, X. Lai, and D. W. Goodman, Science, 1998, 281, 1647-1650.
23. J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science, 2003, 299, 864-867.
24. B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J. M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Science, 2005, 307, 403-407.
25. C. T. Campbell, Nat. Chem., 2012, 4, 597-598.
26. M. Boronat, A. Leyva Pérez, and A. Corma, Acc. Chem. Res., 2014, 47, 834-844.
27. L. Liu and A. Corma, Chem. Rev., 2018, 118, 4981-5079.
28. D. Buceta, Y. Piñeiro, C. Vázquez Vázquez, J. Rivas, and M. A. López Quintela, Catalysts, 2014, 4, 356-374.
29. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. 2003, ACS Publications.
30. N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T. K. Sham, and L. M. Liu, Nat. Commun., 2016, 7, 1-9.
31. S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, and M. N. Banis, Sci. Rep., 2013, 3, 1-9.
32. Z. Liu, L. Hong, M. P. Tham, T. H. Lim, and H. Jiang, J. Power Sources, 2006, 161, 831-835.
33. J. Liu, M. Jiao, L. Lu, H. M. Barkholtz, Y. Li, Y. Wang, L. Jiang, Z. Wu, D. j. Liu, and L. Zhuang, Nat. Commun., 2017, 8, 1-10.
34. Y. Lu, Y. Jiang, H. Wu, and W. Chen, J. Phys. Chem. C, 2013, 117, 2926-2938.
35. X. Huang, H. Zhang, C. Guo, Z. Zhou, and N. Zheng, Angew. Chem. Int. Ed., 2009, 48, 4808-4812.
36. S. Lai, C. Fu, Y. Chen, X. Yu, X. Lai, C. Ye, and J. Hu, J. Power Sources, 2015, 274, 604-610.
37. K. Hayamizu and Y. Aihara, J. Phys. Chem. Lett., 2010, 1, 2055-2058.
38. X. Zhong, Y. Qin, X. Chen, W. Xu, G. Zhuang, X. Li, and J. Wang, Carbon, 2017, 114, 740-748.
39. E. Gileadi, Electrode kinetics for chemists, chemical engineers, and materials scientists. 1993: Capstone.
40. M. A. Dominguez-Crespo, E. Ramírez-Meneses, A. M. Torres-Huerta, V. Garibay-Febles, and K. Philippot, Int. J. Hydrog. Energy, 2012, 37, 4798-4811.
41. R. Armstrong, J. Electroanal. Chem., 1972, 39, 81-90.
42. D. A. Harrington and B. Conway, Electrochimi. Acta, 1987, 32, 1703-1712.
43. B. Losiewicz, A. Budniok, E. Rowinski, E. Lagiewka, and A. Lasia, Int. J. Hydrog. Energy, 2004, 29, 145-157.
44. A. Krolikowski and A. Wiecko, Electrochimi. Acta, 2002, 47, 2065-2069.
45. P. Wang, K. Jiang, G. Wang, J. Yao, and X. Huang, Angew. Chem. Int. Ed., 2016, 55, 12859-12863.
46. D. Hou, W. Zhou, X. Liu, K. Zhou, J. Xie, G. Li, and S. Chen, Electrochimi. Acta, 2015, 166, 26-31.
47. R. Ojani, J. B. Raoof, and E. Hasheminejad, Int. J. Hydrog. Energy, 2013, 38, 92-99.
48. X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, and H. Zhang, Nat. Commun., 2013, 4, 1-8.
49. J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, and X. Bao, Energy Environ. Sci., 2015, 8, 1594-1601.
50. J. Su, R. Ge, Y. Dong, F. Hao, and L. Chen, J. Mater. Chem. A, 2018, 6, 14025-14042.
51. H. Zhang, P. An, W. Zhou, B. Y. Guan, P. Zhang, J. Dong, and X. W. D. Lou, Sci. Adv., 2018, 4, 6657.
52. Y. Feng, Y. Guan, H. Zhang, Z. Huang, J. Li, Z. Jiang, X. Gu, and Y. Wang, J. Mater. Chem. A, 2018, 6, 11783-11789.
53. J. Zhang, Y. Zhao, X. Guo, C. Chen, C. L. Dong, R. S. Liu, C. P. Han, Y. Li, Y. Gogotsi, and G. Wang, Nat. Catal., 2018, 1, 985-992.
54. K. Li, Y. Li, Y. Wang, J. Ge, C. Liu, and W. Xing, Energy Environ. Sci., 2018, 11, 1232-1239.
55. J. J. Feng, L. X. Chen, P. Song, X. l. Wu, A. J. Wang, and J. Yuan, Int. J. Hydrog. Energy, 2016, 41, 8839-8846.
電子全文 電子全文(網際網路公開日期:20230731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔