跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/01/29 09:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊偉
研究生(外文):Chun-Wei Huang
論文名稱:多孔石墨烯邊界態之氮改質於超級電容的效能研究
論文名稱(外文):Study on Edge-Nitrogen Doped Graphene for High Performance Supercapacitors
指導教授:蘇清源
指導教授(外文):Ching-Yuan Su
學位類別:碩士
校院名稱:國立中央大學
系所名稱:能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:87
中文關鍵詞:氮摻雜石墨烯多孔石墨烯超級電容
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來氮摻雜石墨烯在諸多領域的研究中展現了比本質石墨烯更優異的電化學特性,石墨烯的氮摻雜可分為三種主要型態,其中對於電化學增益最大的屬於邊界態的氮改質(吡啶(pyridinic)和吡咯(pyrrolic)),透過多孔石墨烯大量裸露的邊界缺陷,促使氮摻雜的過程中石墨烯的邊界缺陷能成為摻雜的優選位置,進而比較出邊界態氮摻雜對電化學及儲能應用上的增益。

本研究利用奈米銅粒子和電化學剝離石墨烯複合物(Cu-ECG)合成氮摻雜多孔石墨烯,奈米銅粒子可以在石墨烯片層上蝕刻出不同大小的孔洞(階層孔洞),進而利用氨氣熱退火(Ammonia annealing)實現氮摻雜的效果。透過XPS和EDS元素分析可得知,氮摻雜後的多孔石墨烯可同時擁有三種氮摻雜型態,且透過對多孔石墨烯的氮摻雜不僅可以提升氮摻雜率,甚至可有效提升邊界態氮摻雜的比例。

相較於多孔石墨烯,邊界態氮摻雜的多孔石墨烯在高質量負載時的比電容值可增加49.0%且擴散係數也提升了44.4%,且經過15000次的循環測試之後仍可保有高於99%的電容維持率,另外在BET分析中氮摻雜石墨烯的比表面積提升了兩倍以上,且孔隙的尺寸分布也較氮摻雜前更廣。本研究證實氮摻雜可以在不破壞原有特性的情況下有效的提升多孔石墨烯的電化學表現,同時也探討了邊界態氮改質的多寡對氮摻雜多孔石墨烯儲能表現的影響。
N-doped holey graphene is promoted to solve the main issue of graphene for supercapacitor such as volumetric and gravimetric also the ion-transport mobility. This work proposed two strategies to synthesis N-doped holey graphene with ammonia (NH3) as N-doped precursor. This first strategy, the holey graphene (HG) synthesized by rationally design of the Cu nano catalyst in the annealing method, then the N-doped holey graphene (N-EHG) is produced by post annealing HG in NH3 gas. The second strategy is proposed by post-annealing treatment of Cu nano catalyst/graphene (Cu-Graphene) in NH3 gas to produced N-doped graphene (N-BHG).
Both N-EHG and N-BHG resulted the holey graphene, the edge N-doping (pyridinic and pyrrolic) graphene and graphitic type of N-doping. However, the N-EHG achieved higher surface are up to 509.03 m2/g (2-fold higher than HG) than N-BHG 264.65 m2/g. Also the pore size distribution of N-HG is larger than HG and N-BHG. In the electrochemical application, the N-EHG demonstrated higher specific capacity up to 449.2 mF/cm2 that 49.0% higher than HG (404.2 mF/cm2). In the stability test, the N-EHG could maintain 99% capacity after more than 15,000 cycles retention testing. The diffusion coefficient of N-EHG is increased 44.4% then HG in the high mass loading (15 mg/cm2) that indicate excellent ionic transport. Finally, our method was effectively to synergetic holey and N-doped graphene that a low-cost, highly efficient for supercapacitor application.
摘要 i
Abstract ii
誌謝 iii
總目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 石墨烯 1
1-2 氮摻雜石墨烯 3
第二章 研究背景與文獻回顧 5
2-1 多孔石墨烯的製造與應用 5
2-1-1 物理方法 5
2-1-2 化學方法 8
2-1-3 多孔石墨烯應用 13
2-2 氮摻雜石墨烯的製備方法及應用 17
2-2-1化學氣相沉積(Chemical vapor deposition, CVD) 17
2-2-2 熱退火(Thermal annealing) 19
2-2-3 水熱法(Hydrothermal method) 22
2-2-4 氮摻雜石墨烯在儲能材料的效能提升與機制 23
2-2-5 研究動機 27
第三章 實驗方法與分析 29
3-1 實驗用品與儀器 29
3-2 氮摻雜多孔石墨烯之製備流程 32
3-2-1 電化學剝離石墨烯之製備 32
3-2-2 奈米銅粒子催化劑-石墨烯(Cu-ECG)複合物粉體製作: 32
3-2-3 多孔石墨烯及氮摻雜多孔石墨烯的形成: 33
3-2-4 氨氣熱處理形成氮摻雜多孔石墨烯 36
3-3 試片名稱定義 37
3-4 電化學量測之實驗流程 38
3-4-1 電極製備 38
3-4-2 循環伏安法 (Cyclic voltammetry, CV) 40
3-4-3 計時電位法 (Chronopotentiometry, CP) 40
3-4-4 交流阻抗分析(Electrochemical impedance spectroscopy, EIS) 41
第四章 結果與討論 42
4-1 材料特性分析 42
4-1-1 TEM表面形貌觀察 42
4-1-4 XPS分析結果與討論 45
4-1-5 EDS 元素線分析結果與討論 47
4-1-6 接觸角測量 49
4-1-7 Raman 光譜分析結果與討論 49
4-1-8 BET分析結果與討論 51
4-2電化學特性分析 53
4-2-1 討論多孔石墨烯(HG)之電化學特性 53
4-2-2 討論氮摻雜多孔石墨烯(N-EHG)之電化學特性 56
4-2-3 討論氨氣蝕刻之多孔石墨烯(N-BHG)電化學特性 57
4-2-4 三極式電化學特性綜合比較 59
4-2-5 二極式電化學特性比較 66
第五章 結論 69
1. Lloyd-Hughes, J. and T.-I. Jeon, A Review of the Terahertz Conductivity of Bulk and Nano-Materials. Journal of Infrared, Millimeter, and Terahertz Waves, 2012. 33(9): p. 871-925.
2. Xu, Y., et al., Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun, 2014. 5: p. 4554.
3. Fischbein, M.D. and M. Drndić, Electron beam nanosculpting of suspended graphene sheets. Applied Physics Letters, 2008. 93(11).
4. Celebi, K., et al., Ultimate permeation across atomically thin porous graphene. Science, 2014. 344(6181): p. 289-92.
5. Koenig, S.P., et al., Selective molecular sieving through porous graphene. Nat Nanotechnol, 2012. 7(11): p. 728-32.
6. Surwade, S.P., et al., Water desalination using nanoporous single-layer graphene. Nat Nanotechnol, 2015. 10(5): p. 459-64.
7. Xu, H., L. Ma, and Z. Jin, Nitrogen-doped graphene: Synthesis, characterizations and energy applications. Journal of Energy Chemistry, 2018. 27(1): p. 146-160.
8. Inagaki, M., et al., Nitrogen-doped carbon materials. Carbon, 2018. 132: p. 104-140.
9. Zhang, L.S., et al., Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys, 2010. 12(38): p. 12055-9.
10. Jeong, H.M., et al., Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett, 2011. 11(6): p. 2472-7.
11. Zhao, X., et al., Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano, 2011. 5(11): p. 8739-49.
12. Wang, S., et al., Room-temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets. J Am Chem Soc, 2009. 131(46): p. 16832-7.
13. Wang, H., et al., Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A, 2013. 1(38).
14. Xu, Y., et al., Solution Processable Holey Graphene Oxide and Its Derived Macrostructures for High-Performance Supercapacitors. Nano Lett, 2015. 15(7): p. 4605-10.
15. Liu, D., Q. Li, and H. Zhao, Electrolyte-assisted hydrothermal synthesis of holey graphene films for all-solid-state supercapacitors. Journal of Materials Chemistry A, 2018. 6(24): p. 11471-11478.
16. Dutta, D., et al., Nanocatalyst-Assisted Fine Tailoring of Pore Structure in Holey-Graphene for Enhanced Performance in Energy Storage. ACS Appl Mater Interfaces, 2019. 11(40): p. 36560-36570.
17. Liang, X., et al., Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett, 2010. 10(7): p. 2454-60.
18. Cohen-Tanugi, D. and J.C. Grossman, Water desalination across nanoporous graphene. Nano Lett, 2012. 12(7): p. 3602-8.
19. Rollings, R.C., A.T. Kuan, and J.A. Golovchenko, Ion selectivity of graphene nanopores. Nat Commun, 2016. 7: p. 11408.
20. Wei, D., et al., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett, 2009. 9: p. 1752-1758.
21. Liu, Q., et al., N-doped graphene/carbon composite as non-precious metal electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2012. 81: p. 313-320.
22. Kim, H.-K., et al., Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications. Energy & Environmental Science, 2016. 9(4): p. 1270-1281.
23. Tang, Y.-J., et al., Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016. 6(12).
24. Lherbier, A., A.R. Botello-Mendez, and J.C. Charlier, Electronic and transport properties of unbalanced sublattice N-doping in graphene. Nano Lett, 2013. 13(4): p. 1446-50.
25. Wu, Z.-S., et al., Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACSNANO, 2011. 5: p. 5463-5471.
26. Wang, H., T. Maiyalagan, and X. Wang, Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2012. 2(5): p. 781-794.
27. Wu, Z.-S., et al., Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACSNANO, 2011. 5: p. 5463–5471.
28. Zhang, Y., et al., The production of nitrogen-doped graphene from mixed amine plus ethanol flames. Thin Solid Films, 2012. 520(23): p. 6850-6855.
29. Guo, H.-L., et al., Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J. Mater. Chem. A, 2013. 1(6): p. 2248-2255.
30. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nat Mater, 2008. 7(11): p. 845-54.
31. Eftekhari, A., The mechanism of ultrafast supercapacitors. Journal of Materials Chemistry A, 2018. 6(7): p. 2866-2876.
32. Huang, J., K. Wang, and Z. Wei, Conducting polymernanowire arrays with enhanced electrochemical performance. J. Mater. Chem., 2010. 20(6): p. 1117-1121.
33. Wang, K., et al., High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater, 2013. 25(10): p. 1494-8.
34. Wang, K., et al., Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. Journal of Materials Chemistry, 2011. 21(41).
35. Bai, X., et al., 3D flowerlike poly(3,4-ethylenedioxythiophene) for high electrochemical capacitive energy storage. Electrochimica Acta, 2013. 106: p. 219-225.
36. Balan, B.K., et al., Carbon nanofiber–RuO2–poly(benzimidazole) ternary hybrids for improved supercapacitor performance. RSC Advances, 2013. 3(7).
37. Zhang, X., et al., Hydrothermal-Reduction Synthesis of Manganese Oxide Nanomaterials for Electrochemical Supercapacitors. Journal of Nanoscience and Nanotechnology, 2010. 10(11): p. 7711-7714.
38. Zhang, X., et al., Comparative performance of birnessite-type MnO2 nanoplates and octahedral molecular sieve (OMS-5) nanobelts of manganese dioxide as electrode materials for supercapacitor application. Electrochimica Acta, 2014. 132: p. 315-322.
39. Feng, L., et al., Recent progress in nickel based materials for high performance pseudocapacitor electrodes. Journal of Power Sources, 2014. 267: p. 430-444.
40. Nwanya, A.C., et al., Maize (Zea mays L.) fresh husk mediated biosynthesis of copper oxides: Potentials for pseudo capacitive energy storage. Electrochimica Acta, 2019. 301: p. 436-448.
41. Ambade, R.B., et al., Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes. Chem Commun (Camb), 2013. 49(23): p. 2308-10.
42. SAIKA, T., et al., Study of Hydrogen Supply System with Ammonia Fuel. JSME International Journal, 2006. 49: p. 78-83.
43. Hsieh, C.-T., et al., Electrochemical Capacitors Based on Graphene Oxide Sheets Using Different Aqueous Electrolytes. The Journal of Physical Chemistry C, 2011. 115(25): p. 12367-12374.
44. Zhao, J., et al., Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination. Journal of Catalysis, 2019. 373: p. 240-249.
45. Wang, L., et al., Nitrogen doped graphene: influence of precursors and conditions of the synthesis. J. Mater. Chem. C, 2014. 2(16): p. 2887-2893.
46. Geng, D., et al., Nitrogen doping effects on the structure of graphene. Applied Surface Science, 2011. 257(21): p. 9193-9198.
47. Geng, D., et al., High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy & Environmental Science, 2011. 4(3).
48. Bai, Y., et al., Formation process of holey graphene and its assembled binder-free film electrode with high volumetric capacitance. Electrochimica Acta, 2016. 187: p. 543-551.
49. Zoromba, M.S., et al., Electrochemical Activation of Graphene at Low Temperature: The Synthesis of Three-Dimensional Nanoarchitectures for High Performance Supercapacitors and Capacitive Deionization. ACS Sustainable Chemistry & Engineering, 2017. 5(6): p. 4573-4581.
50. Cheng, H., et al., Supermolecule Self-Assembly Promoted Porous N, P Co-Doped Reduced Graphene Oxide for High Energy Density Supercapacitors. ACS Applied Energy Materials, 2019. 2(6): p. 4084-4091.
51. Yan, J., et al., Interconnected Frameworks with a Sandwiched Porous Carbon Layer/Graphene Hybrids for Supercapacitors with High Gravimetric and Volumetric Performances. Advanced Energy Materials, 2014. 4(13).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top