(3.80.6.131) 您好!臺灣時間:2021/05/15 01:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃泰誠
研究生(外文):TAI-CHENG HUANG
論文名稱:非均質多孔矽結構製備與其熱傳性質分析
論文名稱(外文):Manufacturing and thermal properties analysis of inhomogeneous porous silicon structure
指導教授:洪銘聰洪銘聰引用關係
指導教授(外文):Ming-Tsung Hung
學位類別:碩士
校院名稱:國立中央大學
系所名稱:能源工程研究所
學門:工程學門
學類:綜合工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:93
中文關鍵詞:非均質多孔矽熱傳導率金屬輔助化學蝕刻
外文關鍵詞:inhomogeneous porous siliconthermal conductivitymetal-assisted chemical etching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多孔矽材料因其具有低熱傳導係數特性,利用奈米結構的尺寸效應能使有效熱傳導係數大幅下降,隨著微奈米技術的發展成熟,相繼有許多多孔矽材料的新興應用,其中近年來非均質多孔矽受到關注,非均質多孔矽其結構上在不同位置有著相異的孔隙率,因其結構特性發現具有疏密變化的非均質多孔矽結構有熱整流現象,使熱傳率在正向與反向有所不同。多孔矽之製備包括乾蝕刻、電化學蝕刻、金屬輔助化學蝕刻等。本研究利用兩歩式金屬輔助化學蝕刻法具有製程相對簡單、製備成本低之優點,研究探討不同沉積與蝕刻參數對多孔矽結構影響,最後製備非均質多孔矽結構,並利用雷射閃光法量測其熱擴散係數。
接著探討非均質多孔矽之熱傳性質,利用熱傳數學模型分析在孔隙率影響下對熱傳導係數影響,研究結果顯示在低孔隙率下,均質多孔矽結構與非均質多孔矽結構之熱傳導係數差異不大。最後藉由非均質多孔矽結構之孔隙率的變化,再透過熱傳導係數對溫度的相依,使多孔矽結構因孔隙率及溫度的不同改變其熱傳導係數,預測其熱整流效率。
As porous silicon materials exhibit low thermal conductivity technology characteristics, using the size effect of nanostructures can significantly lower the effective thermal conductivity coefficient. Owing to the mature development of micro-nano technology, various emerging applications of porous silicon materials have been proposed successively. Recently, applications of inhomogeneous porous silicon materials have attracted great attention. Inhomogeneous porous silicon characterized by diversified porosity at various places in its structure. The inhomogeneous porous silicon system with porosity differences has been found to exhibit thermal rectification phenomenon, leading to the rate of heat transfer vary in both forward and backward direction owing to its structural characteristics.
Common processes for the synthesis of porous silicon materials include dry etching, electrochemical etching and metal-assisted chemical etching. In this study, metal-assisted chemical etching was employed due to its advantage of relatively facile process and low cost. This study explores the etching parameters and their impact on the porous structure of silicone and consolidates the effects of these parameters to synthesize an inhomogeneous porous silicon structure and the coefficient of thermal diffusion is measured by the laser flash method.
The thermal conductivity properties of inhomogeneous porous silicon materials were discussed. Using the mathematical model of heat transfer to analyze the influence of the porosity on the thermal conductivity coefficient. The research results show that at low porosity, the thermal conductivity coefficients of the homogeneous porous silicon structure and the inhomogeneous porous silicon structure are similar different. Eventually, the porosity of the inhomogeneous porous silicon structure and the thermal conductivity reliance on temperature are used to adjust the porous silicon structure owing to the varying porosity and temperature thermal conductivity coefficient, and predict its efficiency of thermal rectification efficiency.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xi
符號說明 xii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 研究動機與目的 8
1.4 論文架構 8
第二章 理論基礎 9
2.1 金屬輔助化學蝕刻 9
2.1.1 蝕刻機制與過程 9
2.1.2 蝕刻反應 10
2.1.3 蝕刻液濃度之影響 12
2.1.4 溫度與照明對蝕刻的影響 12
2.3 熱傳導理論 13
2.4 多孔結構之熱傳導數學模型 14
第三章 研究方法 16
3.1 研究架構 16
3.2 試片製備 18
3.2.1 實驗器材準備 18
3.2.2 實驗流程 19
3.3 量測方法 23
3.3.1 多孔矽結構量測與分析 23
3.3.2 熱傳性質量測方法 24
3.3.3 非均質多孔矽之孔隙率估算 26
第四章 結果與討論 27
4.1 銀粒子沉積結果 27
4.2 多孔矽結構蝕刻結果 32
4.2.1 蝕刻時間影響 32
4.2.2 蝕刻液溫度影響 35
4.2.3 蝕刻液濃度影響 38
4.2.4 銀粒子對多孔結構影響 42
4.2.5 雙層結構之長時間蝕刻 44
4.3 熱傳性質分析 53
4.3.1 熱傳性質量測之結果 53
4.3.2 熱傳數學模型計算與分析 57
4.3.3 熱整流效率預測 66
第五章 結論與未來工作 70
5.1 結論 70
5.2 未來展望 71
參考文獻 72
[1] Malek Atyaoui, Wissem Dimassi, Atef Atyaoui, Jalel Elyagoubi, Rachid Ouertani, and Hatem Ezzaouia, "Improvement in photovoltaic properties of siliconsolar cells with a doped porous silicon layer with rare earth (Ce,La) as antireflection coatings," Journal of Luminescence, vol. 141, pp. 1-5, 2013.
[2] Asmiet Ramizy, Wisam J. Aziz, Z. Hassan, Khalid Omar, and K. Ibrahim, "Improved performance of solar cell based on porous silicon surfaces," Optik, vol. 122, no. 23, pp. 2075-2077, 2011.
[3] Yi Cui, Qingqiao Wei, Hongkun Park, and Charles M. Lieber, "Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species," SCIENCE, vol. 293, no. 5533, pp. 1289-1292, 2001.
[4] Shalini Singh, Jyoti Zack, Dinesh Kumar, S. K. Srivastava, Govind, Daman Saluja, M. A. Khan, and P. K. Singh, "DNA hybridization on silicon nanowires," Thin Solid Films, vol. 519, no. 3, pp. 1151-1155, 2010.
[5] C. Calazaa, M. Sallerasa, D. Davilaa, A. Taranconb, A. Moratab, J. D. Santosb, G. Gadeab, and L. Fonseca, "Bottom-Up Silicon Nanowire Arrays for Thermoelectric Harvesting," Materials Today: Proceedings, vol. 2, no. 2, pp. 675-679, 2015.
[6] X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Applied Physics Letters, vol. 77, no. 16, p. 2572, 2000.
[7] Shaoyuan Li, Wenhui Ma, Yang Zhou, Xiuhua Chen, Yongyin Xiao, Mingyu Maa, Feng Wei, and Xi Yang, "Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE," Journal of Solid State Chemistry, vol. 213, pp. 242-249, 2014.
[8] Ji-Li Tian and Hua-Yu Zhang, "Controllable growth of silicon nanowire arrays fabricated by two-step silver catalyzed chemical etching," Superlattices and Microstructures, vol. 88, pp. 180-187, 2015.
[9] Kanakaraj Rajkumar, Ramanathaseamy Pandian, Amirthapadian Sakarakumar, and Ramasamy Thangavelu Rajendra Kumar, "Engineering Silicon to Porous Silicon and Silicon Nanowires by Metal-Assisted Chemical Etching: Role of Ag Size and Electron-Scavenging Rate on Morphology Control and Mechanism," ACS Omega, vol. 2, pp. 4540-4547, 2017.
[10] G Gesele, J Linsmeieryx, V Drachy, J Frickey, and R Arens-Fischerz, " Temperature-dependent thermal conductivity of porous silicon," Journal of Physics D: Applied Physics, vol. 30, no. 16, pp. 2911-2916, 1997.
[11] R. Srinivasanl, M. Jayachandran, and K. Ramachandran, "Photoacoustic studies on optical and thermal properties of p-type and n-type nanostructured porous silicon for (100) and (111) orientations," Crystal Research and Technology, vol. 42, no. 3, pp. 266-274, 2006.
[12] E. Amin-Chalhouba, N. Semmara, L. Coudronb, G. Gautierb, C. Boulmer-Leborgnea, A.Petita, M. Gaillarda, J. Mathiasa, and E. Millona, "Thermal conductivity measurement of porous silicon by pulsed-photothermal method, " Journal of Physics D Applied Physics, vol. 44, no. 35, pp. 355-401, 2011.
[13] Gang Wu and Baowen Li, "Thermal rectifiers from deformed carbon nanohorns," Journal of Physics: Condensed Matter, vol. 20, no. 17, pp. 175211, 2008.
[14] M. Criado-Sancho, F. X. Alvarez, and D. Jou, "Thermal rectification inhomogenous nanoporous Si devices," Journal of Applied Physics, vol. 114, no. 17, pp. 053513. 2013.
[15] Xavier Cartoixa, Luciano Colombo, and Riccardo Rurali, "Thermal Rectification by Design in Telescopic Si Nanowires," Nano Letters, vol. 15, pp. 8255-8259. 2015.
[16] Zhipeng Huang, Nadine Geyer, Peter Werner, Johannes de Boor, and Ulrich Gösele, "Metal‐Assisted Chemical Etching of Silicon: A Review," Advanced Materials, vol. 23, no. 2, pp. 285-308. 2011
[17] C. Chartier, S. Bastide, and C. Levy-Clement, "Metal-assisted chemical etching of silicon in HF–H2O2," Electrochimica Acta, vol. 53, no. 17, pp. 5509-5516. 2008.
[18] S. L. Cheng, C. H. Chung, and H. C. Leea, "Study of the Synthesis Characterization, and Kinetics of Vertical Silicon Nanowire Arrays on (001)Si Substrates," Journal of The Electrochemical Society, vol. 155, no. 11, pp. D711-D714. 2008.
[19] Netzsch http://www.netzsch-thermal analysis.com/en/home.html
[20] F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass transfer, John Wiley & Sons, 2012.
[21] Allon I. Hochbaum, Renkun Chen, Raul Diaz Delgado, Wenjie Liang, Erik C. Garnett, Mark Najarian, Arun Majumdar, and Peidong Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature, vol. 451, pp. 163-167, 2008.
[22] Xiaocheng Li, Kun Liang, Beng Kang Tay, and Edwin H. T. Teo, "Morphology-tunable assembly of periodically aligned Si nanowire and radial pn junction arrays for solar cell applications," Applied Surface Science, vol. 258, no. 17, pp. 6169-6176. 2012.
電子全文 電子全文(網際網路公開日期:20250813)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top