|
[1] V.Mnih, K.Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” in NIPS Deep Learning Workshop, 2013. [2] D. Silver, “Lecture 5: Model-Free Control”, Lecture Note of UCL Course on RL, 2015 [3] T. Schaul, J. Quan, I. Antonoglou and D. Silver, “Prioritized Experience Replay,” in International Conference on Learning Representations, 2016. [4] M. Drumond, T. Lin, M. Jaggi, B. Falsafi, “Training DNNs with Hybrid Block Floating Point,” arXiv:1804.01526v4, Dec 2018. [5] P. R. Gankidi et al, “FPGA Architecture for Deep Learning and its application to Planetary Robotics,” in Proc. 2017 IEEE Aerospace Conf., pp. 1-9 [6] A. Amravati, S.B. Nasir, S. Thangadurai, I. Yoon, A. Raychowdury, “A 55nm Time-domain mixed-signal neuronmorphic accelerator with stochastic synapses and embedded reinforcement learning for autonomous micro- robots,” 2018 IEEE International Solid- State Circuits Conference-(ISSCC), pp. 124-124 [7] Y. Kim et al., “A 0.55 V 1.1 mW Artificial Intelligence Processor with On- Chip PVT Compensation for Autonomous Mobile Robots,” IEEE Trans. Circuits Syst. I. Reg. Papers, Vol. 65, No. 2, Feb 2018 [8] D. Elam, C. lovescu, “A Block Floating Point Implementation for an N-Point FFT on the TMS320C55x DSP”, Texas Instruments Application Report, SPRA948, Sep 2003 [9] M. Drumond, T. Lin, M. Jaggi, B. Falsafi, “Training DNNs with Hybrid Block Floating Point”, arXiv:1804.01526v4, Dec. 2018 [10] M. Hessel, J. Modayil, H. v. Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot, M. Azar, D. Silver, “Rainbow:Combining Improvements in Deep Reinforcement Learning”, arXiv:1710.02298v1, Oct. 2017 [11] H. v. Hasselt, A. Guez, D. Sliver, “Deep Reinforcement Learning with Double Q-learning”, arXiv:1509.06461v3, Dec. 2015 [12] Z. Wang, T. Schaul, M. Hessel, H. v. Hasselt, M. Lanctot, N. d. Freitas, “Dueling Network Architectures for Deep Reinforcement Learning”, arXiv:1511.06581v3, Apr. 2016 [13] S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan, “Deep Learning with Limited Numerical Precision” arXiv:1502.02551v1, Feb. 2015
|