(3.236.118.225) 您好!臺灣時間:2021/05/17 09:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖偉筑
研究生(外文):Wei-Chu Liao
論文名稱:矽基鍺模板上N通道砷化銦鎵及P通道鍺鰭式場效電晶體之研製
論文名稱(外文):Fabrication of n-channel InGaAs and p-channel Ge Fin Field-Effect Transistors on Ge/Si Templates
指導教授:綦振瀛
指導教授(外文):Jen-Inn Chyi
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:70
中文關鍵詞:鰭式場效電晶體砷化銦鎵
外文關鍵詞:Fin Field-Effect TransistorsInGaAsGe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著積體電路技術的快速發展,現今矽晶圓廠的生產技術已發展至5奈米節點,電晶體性能逐漸接近物理極限,需要尋找新架構且容忍度較大之通道材料來突破。根據產業技術發展的情形,具有高電子遷移率的Ⅲ-Ⅴ族砷化銦鎵與具有高電洞遷移率的鍺,被認為是製作N型與P型場效電晶體具有潛力的材料。因此,如何實現異質整合之鍺與砷化銦鎵互補式金氧半電晶體是未來量產化的關鍵技術之一。本研究率先開發於矽基板上製備鍺模板,接著以有機金屬化學蒸氣沉積法(MOCVD)選擇性成長砷化鋁銦/砷化銦鎵於其上,並研製鰭式場效電晶體(FinFET)。
  本研究比較乾式與濕式蝕刻方式將鍺溝槽底部形貌之影響,並觀察其對後續選擇性磊晶砷化鋁銦所產生之缺陷多寡及對元件特性之影響。此二法所製作之砷化銦鎵鰭式場效電晶體在通道寬度100奈米與閘極長度為60奈米下之最大電流密度分別為77.8 μA/μm及74 μA/μm,次臨界擺幅(S.S.)分別為468 mV/dec.與810 mV/dec.,二者之閘極漏電密度則皆低於5×10-6 μA/μm。此研究所製作之鍺鰭式場效電晶體於通道寬度40奈米閘極長度為60奈米之最大電流密度為35 μA/μm,次臨界擺幅(S.S.)為2217 mV/dec.,而閘極漏電密度為2.47×10-5 μA/μm。此研究已將三五族與鍺鰭式場效電晶體整合於矽基板上,未來在優化選擇性成長技術與閘極製程技術後,應可降低次臨界擺幅、提升汲極電流密度、降低閘極漏電流密度。
While Si complementary metal-oxide-semiconductor (CMOS) manufacturing technology comes to 5 nm technology nodes, current transistor technology is also approaching its physical limit. The quests for energy efficient transistors and high mobility channel materials have provoked tremendous research efforts worldwide in recent years. Among the options that are closer to reality, InGaAs and Ge, which has high electron mobility and high hole mobility, respectively, are of great interest for n-channel and p-channel materials. Heterogeneous integration of these two materials on Si substrate is therefore a key technology to develop for future mass production. This study concerns the fabrication of InGaAs fin field-effect transistors(FinFETs)using selective area growth (SAG) in Ge trenches on Si substrates by MOCVD.
  In this study, the Ge trenches were prepared by dry etching and wet etching methods to investigate how the resultant trench morphology affects the growth of InAlAs/InGaAs fins and the device characteristics. The maximum current density of the InGaAs FinFETs fabricated by these two methods devices is 77.8 μA/μm and 74 μA/μm with a sub-threshold swing (S.S.) of 468 mV/dec and 810 mV/dec, respectively, for the devices with a channel width of 100 nm and a gate length of 60 nm. The gate leakage density of both devices is lower than 5×10-6 μA/μm. The maximum current density of the Ge FinFETs with a channel width of 40 nm and a gate length of 60 nm is 35 μA/μm, and has a sub-threshold swing (S.S.) of 2217 mV/dec. The gate leakage density is 2.47×10-5 μA/μm.
  This work demonstrates the integration of InGaAs and Ge FinFETs on a Ge/Si template. In-depth analysis indicates that further optimization on the selective area growth and gate-stack processes is required to achieve higher drain current density and lower sub-threshold swing.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.2.1 高載子遷移率材料介紹 2
1.2.2 選擇性磊晶成長砷化銦鰭式場效電晶體之文獻回顧 6
1.2.3 鍺鰭式場效電晶體之文獻回顧 8
1.3 論文架構 10
第二章 實驗設備與參數萃取方式 11
2.1 前言 11
2.2 實驗儀器 12
2.2.1 電子束微影系統簡介 12
2.2.2 原子層沉積系統簡介 12
2.3 參數萃取方式 14
2.3.1 鰭式場效電晶體不同尺寸其定義 14
2.3.2 臨界電壓定義(Threshold Voltage) 15
2.3.3 次臨界擺幅定義(Sub-threshold Swing) 15
2.3.4電流開關比(On Off Ratio) 16
2.3.5汲極引發位能障下降定義(Drain Induce Barrier Lowing) 16
第三章 選擇性磊晶砷化銦鎵鰭式場效電晶體 17
3.1 前言 17
3.2 選擇性磊晶基板製作 18
3.3 選擇性磊晶前蝕刻及成長三五族材料 19
3.3.1 選擇性磊晶前濕式蝕刻及成長三五族材料之影響 19
3.3.2 選擇性磊晶前乾式蝕刻及成長三五族材料之影響 24
3.3.3 磊晶前乾蝕刻與濕蝕刻比較 29
3.4 不同選擇性磊晶前蝕刻砷化銦鎵鰭式場效電晶體 32
3.4.1 選擇性磊晶砷化銦鎵鰭式場效電晶體製作 32
3.4.2 選擇性磊晶砷化銦鎵鰭式場效電晶體特性分析 38
3.5 本章結論 42
第四章 鍺鰭式場效電晶體 43
4.1 鍺鰭式場效電晶體製作 43
4.2 鍺鰭式場效電晶體特性分析 50
4.3 本章總結 52
第五章 總結 53
參考文獻 55
[1] S. Takagi, M. Noguchi, M. Kim, S.-H. Kim, C.-Y. Chang, M. Yokoyama, K. Nishi, R. Zhang, M. Ke, and M. Takenaka, “III-V/Ge MOS device technologies for low power integrated systems,” Solid-State Electron., vol. 125, pp. 82-102, 2016.
[2] D. J. Smith, J. Lu, T. Aoki, M. R. McCartney, and Y.-H. Zhang, “Observation of compound semiconductors and heterovalent interfaces 65 using aberration-corrected scanning transmission electron microscopy,” Journal of Materials Research, vol. 32, pp. 921-927, 2016.
[3] N. Waldron, C. Merckling, W. Guo, P. Ong, L. Teugels, S. AnsarI, D. Tsvetanova, F. Sebaai, D.H. van Dorp, A Milenin, D. Lin, L. Nyns, J. Mitard,
A Pourghaderi, B. Douhard, O. Richard, H. Bender, G. Boccardi, M. Caymax, M. Heyns, W. Vandervorst, K. Barla, N. Collaert and AV-Y. “An InGaAs/InP Quantum Well FinFET Using the Replacement Fin Process Integrated in an RMG Flow on 300mm Si Substrates,” in Symposium on VLSI Technology Digest of Technical Papers, 2014.
[4] L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni and J. Fompeyrine, “Confined Epitaxial Lateral Overgrowth (CELO): A Novel Concept for Scalable Integration of CMOS-compatible InGaAs-on-insulator MOSFETs on Large-Area Si Substrates,” in Symposium on VLSI Technology Digest of Technical Papers, pp. T172-T173, 2015.
[5] M. L. Huang, S. W. Chang, M. K. Chen, Y. Oniki, H. C. Chen, C. H. Lin, W. C. Lee, C. H. Lin, M. A. Khaderbad, K. Y. Lee, Z. C. Chen, P. Y. Tsai, L. T. Lin, M. H. Tsai, C. L. Hung, T. C. Huang, Y. C. Lin, Y.-C. Yeo, S. M. Jang, H. Y. Hwang, Howard C.-H. Wang, and Carlos H. Diaz, “High performance Ino.53Gao.47As FinFETs fabricated on 300 mm Si substrate,” in Symposium on VLSI Technology Digest of Technical Papers, 2016.
[6] Cezar B. Zota, Fredrik Lindelow, Lars-Erik Wernersson and Erik Lind, “InGaAs Tri-gate MOSFETs with Record On-Current ,” in Electron Device Meeting (IEDM), pp.56-58, 2016
[7] M.J.H. van Dal, G. Vellianitis, G. Doornbos, B. Duriez, T.M Shen, C.C. Wu, R. Oxland, K. Bhuwalka, M. Holland, T.L. Lee, C. Wann, C.H. Hsieh, B.H. Lee, K.M. Yin, Z.Q. Wu, M. Passlack, and C. Si H. Diaz, “Demonstration of scaled Ge p-channel FinFETs integrated on, ” in Electron Device Meeting (IEDM), pp.521-524, 2012.
[8] Heng Wu, Wei Luo, Hong Zhou, Mengwei Si, Jingyun Zhang and Peide D. Ye, “First Experimental Demonstration of Ge 3D FinFET CMOS Circuits,” in Symposium on VLSI Technology Digest of Technical Papers, pp. T58-T59, 2015.
[9] M.-S. Yeh, G.-L. Luo, F.-J. Hou, P.-J. Sung, C.-J. Wang, C.-J. Su, C.-T. Wu, Y.-C. Huang, T.-C. Hong, T.-S. Chao, B.-Y. Chen, K.-M. Chen, M. Izawa, M. Miura, M. Morimoto, H. Ishimura, Y.-J. Lee, W.-F. Wu, W.-K. Yeh, “Ge FinFET CMOS Inverters with Improved Channel Surface Roughness by Using In-situ ALD Digital O3 Treatment,” IEEE Electron Devices Technology and Manufacturing Conference Proceedings of Technical Papers, pp. 205-207, 2018.
[10] M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III−V materials on Si for nanoscale logic and photonic devices,” Crystal Growth & Design, 12, pp. 4696-4702, 2012.
[11] 許乃蓉:〈鍺與砷化銦鎵鰭式場效電晶體共閘極製程之開發〉,碩士論文,國立中央大學,2017。.
[12] 鄒承翰:〈開發具鈦鋁矽銅歐姆接觸之砷化銦鎵金氧半場效電晶體〉,碩士論文,國立中央大學,2017。
電子全文 電子全文(網際網路公開日期:20210520)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top