(3.238.96.184) 您好!臺灣時間:2021/05/08 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳佳芸
研究生(外文):Jia-Yun Wu
論文名稱:二維矩陣係數驗證及半導體元件模擬
論文名稱(外文):2D matrix coefficient verification and semiconductor device simulation
指導教授:蔡曜聰
指導教授(外文):Yao-Tsung Tsai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:62
中文關鍵詞:矩陣係數驗證法二維三角形網格元件模擬
相關次數:
  • 被引用被引用:0
  • 點閱點閱:46
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文討論矩陣係數驗證法,來幫助半導體元件模擬之程式開發。在過去經常面臨程式上不收斂或者結果錯誤,且常常束手無策,很困難解決,因此矩陣係數驗證法可以一步一步驗證出聯立方程式的係數值,並且保證確保能抓到錯誤。為了增加二維分析的彈性,我們採用重心法的三角形網格,在第一個三角形網格後面驗證係數值,檢查理論值與模擬值是否一致,以達驗證目的。最後,再將此三角形網格應用於其他半導體元件,如電阻、PN二極體、BJT等,並模擬其特性曲線。
In this thesis, we discuss the matrix coefficient verification method to help develop programs for semiconductor device simulation. In the past, we often faced program non-convergence or had wrong results. We feel helpless and it is difficult to solve. Therefore, the matrix coefficient verification method can verify the coefficient values of simultaneous equations step by step, and ensure that errors can be caught. In order to increase the flexibility of the two-dimensional analysis, we use the triangle grid module to verify the coefficient values in the first triangle grid and check whether the theoretical value and the simulated value are consistent to achieve the verification. Finally, the triangular grid is applied to other semiconductor devices, such as resistors, PN diodes, BJT, etc., and simulate their characteristic curves.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 vii
第一章 簡介 1
第二章 二維電路模擬架構與偵錯 4
2.1電路模擬之基本架構 4
2.2 如何有效率偵錯程式 8
2.3 矩陣係數驗證之重要性 10
第三章 二維三角形重心法的係數驗證 13
3.1三角形重心法之等效電路 13
3.2矩陣係數驗證 16
3.3電腦差分近似法求係數之探討 32
3.4電阻與PN二極體之模擬與驗證 34
第四章 二維BJT半導體元件之應用 41
4.1二維BJT之結構分析 41
4.2 二維BJT網格模型之設計 43
4.3二維BJT與其特性曲線模擬 45
第五章 結論 48
參考資料 49
[1] Y. M. Li, “Research on Development of Computer Simulation Methods for Semiconductor
Devices and Nanostructures,” D. S. Thesis, Institute of Electronics, National Chiao Tung
University, Taiwan, Republic of China, 2000.
[2] R. A. Jabr, M. Hamad, Y. M. Mohanna, “Newton-Raphson Solution of Poisson’s Equation
in a PN Diode,” Int. J. Electrical Eng. Educ., Jan. 2007.
[3] M. S. Li, “Rectangular Transform of Trapezoidal Mesh and Its Application to Cylindrical
MOSFETs,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of
China, 2011.
[4] M. Bern, D. Eppstein, and J. Gilbert, “Provably good mesh generation,” J. Compute.
System Sci., pp. 384–409, 1994
[5] S. S. Kuo, “Computer applications of numerical methods” Additions-Wesley Pub.Co.
1972.
[6] D. M. Bressoud, “Appendix to A Radical Approcch to Real Analysis,” 2nd edition,2006
[7] Robert L. Boylestad, Louis Nashelsky, “Electronic Devices and Circuit Theory,”Chapter
2, Prentice Hall, 9 edition, 2005
[8] H. J. Kai,“ Finding the internal vector fromthe plane equation in obtuse triangle element
for 2D semiconductor device simulation,” M. S. Thesis, Institute of EE, National Central
University, Taiwan, Republic of China, pp. 7-10, 2016.
[9] W. T. Shen” Finding internal vector from the edge vector in obtuse triangle element for 2D
semiconductor device simulation,” M. S. Thesis, Institute of EE, National Central
University, Taiwan, Republic of China, pp. 5-8, 2016.
[10] D. A. Neamen, Semiconductor Physics and Devices, 3rd ed. McGraw-Hill Companies Inc.,
New York, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔