(3.235.245.219) 您好!臺灣時間:2021/05/10 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宥銘
研究生(外文):You-Ming Chen
論文名稱:金屬氧化物熱電材料開發及模組製作
論文名稱(外文):Developement and Module fabrication of Metal Oxide Thermoelectric Materials
指導教授:辛正倫
指導教授(外文):Cheng-Lun Hsin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:67
中文關鍵詞:熱電氧化銦二氧化鈰熱電模組
外文關鍵詞:thermoelectricindium oxidecerium oxidezincthermoelectric module
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著地球暖化的問題被重視,能源的永續發展成為一個重要的發展方向。能源的使用過程中,有許多能量以熱的形式損耗,而如何減少、回收這些損耗能源便是一個重要的課題。其中,熱電材料是一種能在熱能及電能之間轉換的材料,透過溫差的不同產生電能提升能源使用的效率,可以應用在廢熱回收、溫差發電等。
熱電材料性能的好壞取決於材料的特性。其中氧化物半導體因較佳的熱穩定性及化學穩定性,是一種良好的熱電材料,且有研究指出奈米結構可以進一步提升熱電性能。
本論文研究N型半導體材料,主要使用材料為氧化銦,透過摻雜不同比例的鋅,量測其作為熱電元件的特性。我們以2, 4, 6, 8, 10及12 at%比例的鋅和10at%的二氧化鈰添加至氧化銦中,其熱電特性隨著添加比例的增加而更優秀。選擇較佳的比例後進行模組的製作,並在不同溫度下量測其輸出功率。
Owing to the issue of global warming, the development of sustainable and clean energy has become an important topic. During the consumption of energy, a lot of heat is generated. Thus, the recycling of waste heat by thermoelectric materials, which generate electric power under a temperature bias, is a feasible option for efficiency improvement.
The performance of thermoelectric materials depends on their physical characteristics. Among them, metal oxide semiconductors are potential due to good thermal and chemical stability. Studies have pointed out that the improvement of thermoelectric performance can be achieved by nanoengineering.
In this thesis, Zn-doped indium oxide, which is a N-type semiconductor materials, was studied for thermoelectric applications. Different atomic ratio of Zn (2, 4, 6, 8, 10 and 12at%) and CeO_2(10at%) was added into In2O3 matrix. With more additives, the figure of merit of the material would increase. A thermoelectric module was manufactured, and its output performance was measured at different temperatures.
摘要................................................................i
Abstract............................................................ii
誌謝..............................................................iii
目錄...............................................................iv
圖目錄.............................................................vi
第一章 緒論.........................................................1
1-1 前言........................................................1
1-2 熱電介紹與歷史..............................................1
1-3 熱電材料的發展與應用........................................2
1-4 研究動機....................................................2
第二章 基礎理論.....................................................4
2-1 熱電效應....................................................4
2-2 熱電優值....................................................6
2-3 熱導率及韋得曼-法朗茲定律(Wiedemann-Franz law)...............8
2-4 熱電轉換效率................................................8
第三章 實驗流程與儀器設備..........................................10
3-1 開發步驟...................................................10
3-2 實驗流程...................................................11
3-3 實驗方法...................................................12
3-4 實驗量測介紹...............................................17
3-5 實驗儀器介紹...............................................22
第四章 實驗結果分析與討論..........................................26
4-1 前言.......................................................26
4-2 製程參數...................................................26
4-2-1 奈米〖In〗_2 O_3摻雜2at%Zn..................................26
4-2-2 奈米〖In〗_2 O_3摻雜4at%Zn..................................28
4-2-3 奈米〖In〗_2 O_3摻雜6at%Zn..................................28
4-2-4 奈米〖In〗_2 O_3摻雜8at%Zn..................................29
4-2-5 奈米〖In〗_2 O_3摻雜8at%Zn(碳紙鎳膠) .......................30
4-2-6 奈米〖In〗_2 O_3摻雜10at%Zn.................................30
4-2-7 325mesh〖In〗_2 O_3摻雜10at%Zn..............................31
4-2-8 奈米〖In〗_2 O_3摻雜12at%Zn.................................32
4-2-9 奈米〖In〗_2 O_3摻雜0at%Zn..................................32
4-2-10 〖Ni〗_80 〖Cr〗_20.............................................33
4-2-11 奈米〖In〗_2 O_3摻雜10at%CeO_2..............................33
4-3 量測數據.....................................................34
4-4 SEM,XRD分析.................................................41
4-5 熱穩定性比較...............................................46
4-6 模組製作討論................................................47
4-7 模組量測與討論.............................................48
第五章 結論與未來展望..............................................51
參考文獻...........................................................52
[1] "<出自於:http://www.unavarra.es/ets02/Introduction%20to%20TE.htm >."
[2] "<出自於:https://pb.ps-taiwan.org/catalog/ins.php?index_m1_id=5&index_id=548 >."
[3] T.M. Tritt, "Thermoelectric Materials: Principles, Structure, Properties, and Applications", Elsevier Science Ltd. ,2002.
[4] "<出自於:http://homepages.wmich.edu/~leehs/ME695/Chapter%205.pdf >."
[5] "<出自於:http://www.ndl.org.tw/docs/publication/20_4/pdf/F2.pdf>."
[6] A. J. Minnich, et al., "Bulk nanostructured thermoelectric materials: current research and future prospects", Energy & Environmental Science, vol. 2, no. 5, 2009.
[7] Murphy, P., Mukerjee, S., & Moore, J, "Optimal thermoelectric figure
of merit of a molecular junction", Physical Review B, 2008.
[8] Jun Guo, et al., "Ni metal coating boosting the thermoelectric performance of
In2O3(ZnO)5 ceramics,"Scripta Materialia, 164, p.71–75, 2019.
[9] Combe, E., et al., "Citrate gel process and thermoelectric properties of Ge-
doped In2O3 bulk ceramics", Powder Technology, 208(2), p.503–508, 2011.
[10] G. Korotcenkov, V. Brinzari, and M.-H. Ham, "In2O3-Based Thermoelectric
Materials: The State of the Art and the Role of Surface State in the
Improvement of the Efficiency of Thermoelectric Conversion," Crystals, vol.
8,no. 1, 2018.
[11] M. G. Kanatzidis, "Nanostructured Thermoelectrics: The New Paradigm?†,"
Chemistry of Materials, vol. 22, no. 3, pp. 648-659, 2010.
[12] "<出自於:http://www.mast-tech.com.tw/Resistivity%20Measurement.pdf >."
[13] "<出自於:https://www.jove.com/pdf/10488/jove-protocol-10488-thermal-diffusivity-and-the-laser-flash-method>."
[14] "<出自於:http://www.techmaxasia.com/articles/detail/1196063383>."
[15] "<出自於:https://www.911metallurgist.com/equipment/planetary-ball-mill/>."
[16] "<出自於:https://eaglabs.com.tw/xrd.html>."
[17] K. Park et al., "Improved thermoelectric properties by adding Al for Zn in (ZnO)mIn2O3," Materials Letters, vol. 61, no. 25, pp. 4759-4762, 2007.
[18] P.J.CannardR.J.D.Tilley, "," Solid state chemistry, 1988.
[19] G. Ren et al., "High Performance Oxides-Based Thermoelectric Materials," Jom, vol. 67, no. 1, pp. 211-221, 2014.
[20] K. Koumoto et al., "Thermoelectric Ceramics for Energy Harvesting," Journal of the American Ceramic Society, vol. 96, no. 1, pp. 1-23, 2013.
[21] "<出自於:https://ncu.edu.tw/rd/tw/page/index.php?root=9&num=58>."
[22] Ishiyama, T., & Yamada, H., "Suppression of heat leakage by cooling thermoelectric device for low-temperature waste-heat thermoelectric generation," IEEE International Telecommunications Energy Conference (INTELEC), 2015.
[23] Hongmei, W., Jun, Y., & Zhou, D, "Review of Recent Developments in Thermoelectric Materials," International Conference on Robots & Intelligent System (ICRIS), 2016.
[24] Poh, C. et al., "Analysis of characteristics and performance of thermoelectric modules," 5th International Symposium on Next-Generation Electronics (ISNE), 2016.
[25] Korotcenkov, G., Brinzari, V., & Ham, M., "In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion," Crystals, 2017.
[26] Lin, Y., Lan, J., & Nan, C., Oxide Thermoelectric Materials From Basic Principles to Applications., Weinheim: Wiley-VCH., 2019.
[27] Cheng, B. et al., "Thermoelectric Performance of Zn and GeCo-Doped In2O3 Fine-Grained Ceramics by the Spark Plasma Sintering," Journal of the American Ceramic Society, 94(8), pp. 2279-2281, 2011.
[28] Yantao Liu. et al., " Microstructure and thermoelectric properties of In2O3/ITO thin film thermocouples with Al2O3 protecting layer," Journal of Materials Science: Materials in Electronics, 2018.
[29] Hopper, E. et al., " Electronic and thermoelectric analysis of phases in the In2O3(ZnO)k system," Journal of Applied Physics, 109(1), 013713., 2011.
[30] Bérardan, D. et al., " In2O3:Ge, a promising n-type thermoelectric oxide composite," Solid State Communications, 146(1-2), pp. 97-101, 2008.
[31] Bittner, M. et al., " Oxide-Based Thermoelectric Generator for High-Temperature Application Using p-Type Ca3Co4O9 and n-Type In1.95Sn0.05O3 Legs," Energyo, 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔