(3.238.173.209) 您好!臺灣時間:2021/05/16 21:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李詩淳
研究生(外文):Shih-Chun Li
論文名稱(外文):An application of Bezout\'s theorem: the effective minimal intersection number of a plane curve
指導教授:陳正傑陳正傑引用關係
指導教授(外文):Jheng-Jie Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:38
中文關鍵詞:仿射平面曲線交點數Bezout定理近似根
外文關鍵詞:Embedding lineBezout's Theoremintersection numberapproximate rootsaffinealgebraic curve
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
這篇碩士論文要是研究仿射平面曲線的交點數。事實上,我們將張海潮教授和王立中教授在[CW]的論述中,歸納並得出以下我們的主要定理:
「如果曲線F(1,y,z)在無窮遠處只有一個place,則我們可以建構出與曲線F(1,y,z)相交的曲線G_j,使得它們在所有曲線上達到最小的正交點數。」

這是應用到Bezout定理,以及在[Moh1, Moh2, Moh3, Moh4]介紹的近似根概念。此外,我們可以將Embedding Line Theorem作為一個應用並加以證明。(請參閱第八章)
In this thesis, we study the intersection number of affine plane curves.
Actually, we generalize the argument of Chang and Wang in [CW] to obtain our main theorem as follows:

“if the curve $F(1,y,z)$ has only one place at infinity, then we would construct a curve G_j which intersects curve F(1,y,z) attaining the positive minimal intersection number among all curves."

This is an application of Bezout's Theorem and the approximate roots introduced by [Moh1, Moh2, Moh3, Moh4].

Besides, we can reprove the Embedding Line Theorem as an application (see section 8).
1 Introduction........................................1
2 Basic Knowledge of Commutative Algebra..............2
2.1 Ideals and Modules.................................2
2.2 Discrete Valuation Ring............................3
3 Fundamental Knowledge of Algebraic Curves...........4
3.1 Affine Algebraic Sets and Affine Varieties.........4
3.2 The Intersection Properties of Affine Plane Curves.5
3.3 Projective Varieties...............................6
3.4 Bezout’s Theorem...................................8
4 Parametrizations and Places........................14
4.1 Parametrizations of Curves........................14
4.2 Places of Curves..................................15
4.3 Discussion and Example............................15
5 Zariski’s Works....................................18
6 The Approximate Root of Polynomials................20
6.1 Definitions.......................................20
6.2 Applications of Polynomials.......................20
7 Main Theorem.......................................24
8 Embedding Line Theorem.............................27
9 Appendix...........................................29
Reference..............................................30
Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II;
Embeddings of the line in the plane;
Lectures on expansion techniques in algebraic geometry;
On equisingularity, analytical irreducibility and embedding line theorem;
An Intersection Theoretical Proof of the Embedding Line Theorem;
Algebraic Curves : An introduction to Algebraic Geometry;
Algebraic Geometry;
On Abhyankar-Moh's epimorphism theorem:
Embeddings of the plane;
Commutative Ring Theory;
Curves on Rational and Irrational Surfaces;
On the concept of approximate roots for algebra;
On characteristic pairs of algebroid plane curves for characteristic p;
On two fundamental theorems for the concept of approximate roots;
Algebra 3rd ed.;
An Algebraic Introduction to Complex Projective Geometry : Commutative Algebra;
Algebraic Curves;
Le problème des modules pour les branches planes;
Commutative Algebra
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文