(44.192.66.171) 您好!臺灣時間:2021/05/18 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許瑜峰
研究生(外文):Yu-Feng Hsu
論文名稱:用於高熱通量電子元件之兩相蒸發冷卻系統
指導教授:楊建裕楊建裕引用關係
指導教授(外文):Chien-Yuh Yang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:115
中文關鍵詞:兩相冷卻高熱通量元件散熱微多孔塗層直線流道漸擴流道
外文關鍵詞:Two-Phase coolingHigh heat flux components heat dissipationMicroporous coatingStraight channelExpansion type channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體產業的發展,各項電子設備的發熱密度增加,因此解決電子設備因高發熱量造成熱當機問題成了迫切的需求。傳統的空氣冷卻或單相水冷由於其熱傳係數低,難以應付高的熱通量,所以兩相蒸發冷卻系統成了解決高熱通量元件的散熱問題一種可能的解決方案。若欲解決相同熱傳量,由於液體之潛熱高於顯熱,因此兩相冷卻需要的流量比單相冷卻低得多,能夠降低所需要的泵動力。對於兩相蒸發冷卻系統的研究,許多人嘗試在兩相蒸發熱交換器中縮減流道尺寸以增加熱傳面積,但卻造成燒乾及汽泡回流問題。為了解決這些問題,本研究將應用本實驗室過去對微多孔表面增強沸騰熱傳之研究及微多孔表面熱交換器之初步結果,實際將微多孔塗層應用至適用於高熱通量散熱的直線型式及漸擴型式的熱交換器上,藉由微多孔塗層的大量成核孔洞及毛細吸力達到增強熱傳及延緩熱交換器燒乾。本研究中,我們設計了不同流道深度的直線蒸發熱交換器及漸擴流道的蒸發熱交換器,並使用平均粒徑尺寸約 20 µm 的鋁粉噴塗於蒸發熱交換器上,比較直線與漸擴流道及有塗層和無塗層的熱交換器的熱傳性能。
實驗結果顯示微多孔表面,流道深度 5 mm 的直線流道熱交換器有較好的熱傳性能,因流道深度較深,使流道內形成分層流,流道底部仍有液體流動,且微多孔表面的粒子堆積形成連結的通道,幫助液體補充至沸騰表面,使微多孔表面的燒乾情形延後發生。而漸擴流道的熱交換器因流道截面積隨著流動方向增加,降低汽泡往流道出口移動的壓降,使汽泡更容易往出口移動,減輕了汽泡回流與堵塞現象使熱傳能力增加。
With the development of the semiconductor industry, the heating density of electronic equipment has increased. Therefore, it has become an important issue to solve the problem of thermal crash caused by high heat generation of electronic equipment. Traditional air cooling or single-phase water cooling is difficult to solve such high heat flux due to its low heat transfer coefficient, so the two-phase evaporative cooling system has become a possible solution to the heat dissipation problem of high heat flux components. If the same heat transfer watts is to be solved, since the latent heat of the liquid is higher than the sensible heat, the flow requirement for two-phase cooling is much lower than that for single-phase cooling, which can reduce the pumping power. For the study of two -phase evaporative cooling system, many researchers tried to reduce the flow channel size which can increase the heat transfer area in the two-phase evaporative heat exchanger, but it caused the problems of dry out and bubble back flow. In order to solve these problems, this study will apply the previous research of enhanced boiling heat transfer performance with microporous surfaces and preliminary results of microporous surface heat exchangers in this laboratory, and actually apply microporous coating on straight channels and expansion type channel heat exchangers which are used for high heat flux heat dissipation, a large number of nucleated sites and capillary force of the microporous coating are used to enhance the heat transfer performance and delay the heat exchanger dries out. In this study, straight channel heat exchangers with different channel depths and expansion type channel heat exchanger are designed, and sprayed aluminum powder with an average particle size of about 20 µm on the heat exchangers. Compared the heat transfer performance with different type flow channel and coated and non-coated heat exchangers.
The experimental results show that channel depth 5 mm straight channels heat exchanger with microporous surface has better heat transfer performance. Due to the deeper flow channel depth, a stratified flow is formed in the channel, so liquid still flows at the bottom of channel. In addition, the connected passage between particles can help liquid move into channel and wet the boiling surface and then delay the dry out. In the expansion type channel heat exchanger, because the cross-sectional area of the flow channel increases with the flow direction, so the pressure drop of bubbles move toward the outlet of the flow channel is reduced. Bubbles move to the outlet and reduce the bubble backflow and blockage phenomenon which increase heat transfer performance.
目錄
摘要.................................................... i
Abstract............................................... ii
目錄................................................... iv
圖目錄................................................ vii
表目錄................................................. xi
符號說明............................................... xii
第一章、前言............................................. 1
1.1 研究背景與動機................................... 1
1.2 研究目的......................................... 3
第二章 文獻回顧.......................................... 8
2.1 兩相蒸發熱交換器之研究............................ 9
2.1.1 直線型蒸發熱交換器研究...................... 9
2.1.2 漸擴型蒸發熱交換器研究..................... 11
2.2 微多孔表面熱交換器研究........................... 13
2.3 熱交換器內流動現象.............................. 15
2.4 總結........................................... 16
第三章 實驗方法......................................... 34
3.1 兩相蒸發熱交換器之流道設計....................... 34
3.1.1 直線型流道設計............................ 34
3.1.1.1 直線型流道寬度(Ws).................. 35
3.1.1.2 直線型流道深度(Ds).................. 35
3.1.1.3 直線型流道鰭片厚度(ts).............. 36
3.1.2 漸擴型流道設計............................ 37
3.1.2.1 漸擴型流道漸擴型式.................. 37
3.1.2.2 漸擴型流道入口至出口漸擴率........... 37
3.1.3 微多孔塗層製作............................ 38
3.1.3.1 製作步驟............................ 38
3.1.3.2 塗佈參數............................ 39
3.1.4 熱交換器組合.............................. 40
3.2 實驗系統........................................ 40
3.2.1 加熱系統.................................. 40
3.2.2 實驗量測儀器與設備........................ 41
3.2.2.1 溫度量測............................ 41
3.2.2.2 流量量測............................ 41
3.2.2.3 壓降量測............................ 42
3.2.2.4 流動情形影片擷取.................... 42
3.2.3 資料擷取系統.............................. 42
3.3 實驗條件與步驟.................................. 42
3.4 實驗數據換算.................................... 44
3.4.1 加熱瓦數.................................. 44
3.4.2 質量流率.................................. 44
3.4.3 乾度..................................... 44
3.4.4 熱傳係數.................................. 45
3.4.5 熱阻值................................... 45
第四章、實驗結果與討論................................... 64
4.1 蒸發熱交換器之熱傳性能實驗結果................... 64
4.1.1 平滑表面直線流道熱交換器之熱傳性能......... 64
4.1.2 微多孔表面直線流道熱交換器之熱傳性能........ 65
4.1.3 平滑表面漸擴流道熱交換器之熱傳性能......... 66
4.1.4 微多孔表面漸擴流道熱交換器之熱傳性能........ 67
4.2 蒸發熱交換器之壓降性能實驗結果................... 68
4.2.1 直線流道熱交換器之壓降性能................. 68
4.2.2 漸擴流道熱交換器之壓降性能................. 69
4.3 可視化結果與熱傳性能之關係....................... 69
4.3.1 直線流道可視化結果與熱傳性能之關係......... 69
4.3.2 漸擴流道可視化結果與熱傳性能之關係......... 71
第五章、結論............................................ 92
5.1 實驗參數對熱傳性能之影響......................... 92
5.1.1 流道深度對熱傳性能之影響................... 92
5.1.2 微多孔表面對熱傳性能之影響................. 92
5.1.3 流道形式對熱傳性能之影響................... 93
參考文獻................................................ 94
附錄(一)、實驗誤差分析.................................. 97
參考文獻
[1] Viswanath, R., Wakharkar, V., Watwe, A., and
Lebonheur, V., 2000, “Thermal performance challenges
from silicon to systems”. Intel Technology Journal,
Q3.
[2] Saini, M. and Webb, R.L., 2003, “Heat rejection limits
of air cooled plane fin heat sinks for computer
cooling”. IEEE Transactions on Components and
Packaging Technologies, Vol. 26, pp. 71-79.
[3] 李至誠,2017,不同流道型式之蒸發熱交換器的熱傳性能研究,國
立中央大學機械工程研究所碩士論文,中壢,台灣。
[4] “Two-Phase Evaporative Precision Cooling Systems For
heat loads from 3 to 300kW,” Parker Hannifin
Corporation. 2011.
(https://www.parker.com/literature/Precision%20Cooling/Two_Phas_Evaporative_Precision_Cooling_Systems.pdf)
[5] http://www.1-act.com/advanced-technologies/pumped-two-
phase-cooling/
[6] https://www.1-act.com/case-studies/pumped-two-phase-
cooling-for-high-heat-flux-applications/
[7] Collier, J. G., and Thome, J. R., 1994, Convective
Boiling and Condensation, Third Edition. Oxford
University Press New York. pp. 148-151, pp.17.
[8] Qu, W. and Mudawar, I., 2003, “Flow boiling heat
transfer in two-phase micro-channel heat sinks-I
Experimental investigation and assessment of
correlation methods”. International Journal of Heat
and Mass Transfer, Vol. 46, pp. 2755-2771.
[9] Lee, J. and Mudawar, I., 2008, “Fluid flow and heat
transfer characteristics of low temperature two-phase
micro-channel heat sinks – Part 2. Subcooled boiling
pressure drop and heat transfer”. International
Journal of Heat and Mass Transfer, Vol. 51, pp. 4327
4341.
[10] Wang, C.-C., Hsu, L.-C., Cion, S.-W. and Lin, K.-W.,
2015, “An experimental study of inclination on the
boiling heat transfer characteristics of a micro
channel heat sink using HFE-7100”. International
Communications in Heat and Mass Transfer, Vol. 62,
pp. 13-17.
[11] Markal, B., Aydin, O. and Avci, M., 2018, “Effect of
hydraulic diameter on flow boiling in rectangular
microchannels”. Heat and Mass Transfer, Vol. 55, pp.
1033-1044.
[12] Lu, C.-T. and Pan, C., 2011, “Convective boiling in a
parallel microchannels heat sink with a diverging
cross section and artificial nucleation sites”.
Experimental Thermal and Fluid Science, Vol. 35, pp.
810-815.
[13] Balasubramanian, K., Lee, P. S., Jin, L. W., Chou, S.
K., Teo, C. J. and Gao, S., 2011, “Experimental
investigations of flow boiling heat transfer and
pressure drop in straight and expanding microchannels
- A comparative study”. International Journal of
Thermal Sciences, Vol. 50, pp. 2413-2421.
[14] Yang, C.-Y. and Liu, C.-F., 2013, “Effect of coating
layer thickness for boiling heat transfer on micro
porous coated surface in confined and unconfined
spaces”. Experimental Thermal and Fluid Science, Vol.
47, pp. 40-47.
[15] Deng, D., Tang, Y., Liang, D., He, H. and Yang, S.,
2014, “Flow boiling characteristics in porous heat
sink with reentrant microchannels”. International
Journal of Heat and Mass Transfer, Vol. 70, pp. 463
477.
[16] Semenic, T. and You, S. M., 2013, “Two - Phase Heat
Sink with Microporous Coating”. Heat Transfer
Engineering, Vol. 34, pp. 246-257.
[17] 陳勁廷,2018,微多孔塗層蒸發冷卻器研究,國立中央大學機械
工程研究所碩士論文,中壢,台灣。
[18] Cornwell, K. and Kew, P. A., 1993, “Boiling in small
parallel channels”. Energy Efficiency in Process
Technology, pp. 624-638.
[19] Lee, J. and Mudawar, I., 2008, “Fluid flow and heat
transfer characteristics of low temperature two-phase
micro-channel heat sinks – Part 1: Experimental
methods and flow visualization results”. International
Journal of Heat and Mass Transfer, Vol. 51, pp. 4315
4326.
[20] Yao, S., Lee, H. J. and Liu, D. Y., 2010, “Flow
instability of evaporative micro-channels”.
International Journal of Heat and Mass Transfer, Vol.
53, pp. 1740-1749.
[21] Fritz, W., 1935, “Berechnung des Maximal volumes von
Dampfblasen”. Physik. Zeitschr, Vol. 36, pp. 379-384
[22] O’Connor, J. P. and You, S. M., 1995, “A Painting
Technique to Enhance Pool Boiling Heat Transfer in
Saturated FC-72”. Journal of Heat Transfer, Vol. 117,
pp. 387-393
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top