跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊承得
研究生(外文):Cheng-De Yang
論文名稱:時效對AA2024高強度鋁合金機械與腐蝕特性之影響
論文名稱(外文):Effect of aging on the mechanical and corrosion properties of AA2024 high strength aluminum alloys
指導教授:李勝隆李勝隆引用關係
指導教授(外文):Sheng-Long Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:45
中文關鍵詞:Al-Cu-Mg合金自然時效人工時效拉伸試驗應力腐蝕剝落腐蝕
外文關鍵詞:Al-Cu-Mg alloyNatural agingArtificial agingSSRTSCCEXCO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以光學顯微鏡(OM)、差式掃描熱分析儀(DSC)、導電度量測(%IACS)、電子顯微鏡(TEM、SEM)、硬度量測(HRB)、拉伸試驗(MTS)、慢應變速率拉伸試驗(SSRT)、剝落腐蝕(EXCO)等量測分析,來探討時效製程(自然時效與人工時效)對固溶淬火後之AA2024(Al-4.4Cu-1.5Mg)高強度鋁合金應力腐蝕與剝落腐蝕之影響;結果顯示,在T6態與T7態狀況下,合金之導電度、機械性質、剝落腐蝕與應力腐蝕等並不受自然時效的影響,然而T7態相較T6態具有明顯提升抗剝落腐蝕與應力腐蝕的效果,其剝落腐蝕深度由T6態的480μm,大幅降至T7態的220μm。而慢應變速率拉伸下的延性損失率,顯示合金抗應力腐蝕由T6態的70%,降至T7態的34%,這些結果均顯現自然時效對AA2024合金的機械性質與抗腐蝕性並無顯著的影響,但經T7熱處理後,合金之抗腐蝕能力明顯優於T6態合金。
In this study, optical microscope (OM), differential scanning thermal analyzer (DSC), conductivity measurement (%IACS), electron microscope (TEM, SEM), hardness measurement (HRB), tensile test (MTS), slow strain rate tensile test (SSRT), exfoliation corrosion (EXCO) and other measurement analysis to discuss the aging process (natural aging and artificial aging) on the influence of stress corrosion and exfoliation corrosion of AA2024 (Al-4.4Cu-1.5Mg) high strength aluminum alloys after solution quenching; the results show that in the T6 state and T7 state, the electrical conductivity, mechanical properties, exfoliation corrosion and stress corrosion of the alloy are not affected by natural aging, but the T7 state is compared to the T6 state, it can obviously improve the effect of anti-exfoliation corrosion and anti-stress corrosion, and the depth of exfoliation corrosion is greatly reduced from 480μm in T6 state to 220μm in T7 state. In the slow strain rate tensile test, the ductility loss rate of stress corrosion resistance of the alloy decreased from 70% in the T6 state to 34% in the T7 state. These results show that natural aging has no significant effect on the mechanical properties and corrosion resistance of the AA2024 alloy, but after T7 heat treatment, the corrosion resistance of the alloy is significantly better than T6 alloy.
摘要..........i
Abstract.....ii
謝誌.........iii
總目錄........iv
圖目錄.......vii
表目錄........ix
一、前言與文獻回顧...1
1.1鋁合金簡介.......1
1.2 AA2024鋁合金簡介......2
1.3時效處理對Al-Cu-Mg合金機械性質與微結構之影響.....3
1.4時效處理對高強度鋁合金腐蝕破壞之影響.............5
1.4.1時效處理對Al-Zn-Mg-Cu合金抗腐蝕性之影響.......6
1.4.2時效處理對Al-Cu-Mg合金抗腐蝕性之影響..........7
1.5研究目的........11
二、實驗方法與步驟........12
2.1合金熔配與實驗流程.....12
2.2均質化與熱加工........13
2.3人工時效熱處理........13
2.4微結構觀察與分析......14
2.4.1光學顯微鏡(Optical Microscopy, OM)....14
2.4.2差式掃描熱量法(Differential Scanning Calorimetry, DSC)......................................14
2.4.3導電度測試(Electrical Conductivity)...14
2.4.4掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)......................................15
2.4.5穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)......................................15
2.5機械性質分析...................15
2.5.1硬度試驗(Hardness, HRB)......15
2.5.2拉伸試驗(Tensile Test).......16
2.6腐蝕試驗..............16
2.6.1剝落腐蝕試驗........16
2.6.2慢應變速率拉伸試驗(Slow Strain Rate Test, SSRT)..17
三、結果與討論....18
3.1微觀結構分析....18
3.1.1 OM金相......18
3.1.2差式掃描熱量法(DSC)與導電度(%IACS)分析......19
3.1.3穿透式電子顯微鏡觀察(TEM).....22
3.2機械性質分析......24
3.2.1硬度...........24
3.2.2拉伸試驗........25
3.3腐蝕試驗{剝落腐蝕試驗(EXCO)、應力腐蝕試驗(SCC)}....26
3.4掃描式電子顯微鏡(SEM)破斷面觀察.......29
四、結論.....31
五、參考文獻.......32
[ASTM1] ASTM B918/B918M-17a, Standard practice for heat treatment of wrought aluminum alloys (2017)
[ASTM2] ASTM G34-01, Standard test method for exfoliation corrosion susceptibility in 2XXX and 7XXX series aluminum alloys (exco test) (2013)
[ASTM3] ASTM B557M-15, Standard test methods for tension testing wrought and cast aluminum- and magnesium- alloy products (metric) (2015)
[ASTM4] ASTM B917/B917M-12, Standard practice for heat treatment of aluminum-alloy castings from all processes (2012)
[AMS] AMS 4339A, Aerospace material specification, SAE Aerospace (2004)
[ALE] Nikolaos D. Alexopoulos, “On the corrosion-induced mechanical degradation for different artificial aging conditions of 2024 aluminum alloy”, Materials Science and Engineering A 520 pp.40-48 (2009)
[BIR] N. Birbilis, R.G. Buchheit, “Electrochemical characteristics of intermetallic phases in aluminum alloys an experimental survey and discussion”, Journal of The Electrochemical Society 152 (4) pp.140-151 (2005)
[CHA] A. Charai, T. Walther, C. Alfonso, A.M. Zahra, C.Y. Zahra, “Coexistence of clusters, GPB zones, S''-, S'- and S-phases in an Al-0.9%Cu-1.4%Mg Alloy”, Acta mater. 48 pp.2751-2764 (2000)
[CHE] R.J. Chester, I.J. Polmear, “TEM investigation of precipitates in AlCuMgAg and AlCuMg alloys”, Micron Vol.11 Iss. 3-4 pp.311-312 (1980)
[DAV] J.R. Davis and Associates, “ASM specialty handbook:aluminum and aluminum alloys”, ASM International Materials Park, Ohio, Properties of Wrought Aluminum and Aluminum Alloys (2007)
[GHO] K.S. Ghosh, Md. Hilal, Sagnik Bose, “Corrosion behavior of 2024 Al-Cu-Mg alloy of various tempers”, Trans. Nonferrous Met. Soc. China 23 pp.3215-3227 (2013)
[GRA] Grażyna Mrówka–Nowotnik, Jan Sieniawski, “Analysis of intermetallic phases in 2024 aluminium alloy”, Solid State Phenomena, Vol.197 pp.238-243 (2013)
[IVA] R. Ivanov, A. Deschamps, F. De Geuser, “Clustering kinetics during natural ageing of Al-Cu based alloys with (Mg, Li) additions”, Acta Materialia Vol.157 pp.186-195 (2018)
[LI1] Jin Feng Li, Zheng Ziqiao, Jiang Na, Tan Chengyu, “Localized corrosion mechanism of 2XXX-series Al alloy containing S(Al2CuMg) and θ´(Al2Cu) precipitates in 4.0% NaCl solution at pH 6.1”, Materials Chemistry and Physics 91 pp.325-329 (2005)
[LI2] J.F. Li, Z.Q. Zheng, S.C. Li, W.J. Chen, W.D. Ren, X.S. Zhao, “Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys”, Corrosion Science Vol.49 Iss.6 pp.2436-2449 (2007)
[LEE] Hyunjung Lee, Youngjoo Kim, Yooin Jeong, Sangshik Kim, “Effects of testing variables on stress corrosion cracking susceptibility of Al 2024-T351”, Corrosion Science 55 pp.10-19 (2012)
[OU] Bin-Lung Ou, Ji-Gang Yang, Mon-Yu Wei, “Effect of homogenization and aging treatment on mechanical properties and stress-corrosion cracking of 7050 alloys”, Metallurgical and Materials Transactions A 38 pp.1760-1773 (2007)
[PAR] T.S. Parel, S.C. Wang, M.J. Starink, “Hardening of an Al–Cu–Mg alloy containing types I and II S phase precipitates”, Materials and Design 31 pp.2-5 (2010)
[QI] Hao Qi, Xiao Yan Liu, Shun Xing Liang, Xi Liang Zhang, Hao Xuan Cui, Li Yun Zheng, Fei Gao, Qi Huai Chen, “Mechanical properties and corrosion resistance of Al–Cu–Mg–Ag heat-resistant alloy modified by interrupted aging”, Journal of Alloys and Compounds 657 pp.318-324 (2016)
[RAM] P. Rambabu, N. Eswara, V.V. Kutumbarao, R.J.H. Wanhill, “Aerospace materials and material technologies Vol.1 Chapter 2 aluminum alloys for aerospace application”, Springer Science pp.29-52 (2017)
[RIC] Richard Rajan, Paul Kah, Belinga Mvola, Jukka Martikainen, “Trends in aluminum alloy development and their joining methods”, Review Advance Material Science Vol.44 pp.383-397 (2016)
[SHA] G. Sha, R.K.W. Marceau, X. Gao, B.C. Muddle, S.P. Ringer, “Nanostructure of aluminium alloy 2024:segregation, clustering and precipitation processes”, Acta Materialia 59 pp.1659-1670 (2011)
[SHI1] Han-Cheng Shih, New-Jin Ho, J.C. Huang, “Precipitation behaviors in Al-Cu-Mg and 2024 aluminum alloys”, Metallurgical and Materials Transactions A Vol.27 Iss.9 pp.2479-2494 (1996)
[SHI2] Yunjia Shi, Qinglin Pan, Mengjia Li, Xing Huang, Bo Li, “Influence of alloyed Sc and Zr, and heat treatment on microstructures and stress corrosion cracking of Al–Zn–Mg–Cu alloys”, Materials Science & Engineering A 621 pp.173-181 (2015)
[SHI3] Weining Shi, Haifei Zhou, Xinfang Zhang, “High-strength and anti-corrosion of Al-Cu-Mg alloy by controlled ageing process”, Philosophical Magazine Letters Vol.99 Iss.7 pp.235-242 (2019)
[WAR] T. Warner, “Recently-developed aluminum solutions for aerospace applications”, Materials Sci. Forum Vol.519-521 pp.1271-1278 (2006)
[WAN1] S.C. Wang, M.J. Starink, “Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys”, International Materials Reviews Vol.50 Iss.4 pp.193-215 (2005)
[WAN2] S.C. Wang, M.J. Starink, N. Gao, “Precipitation hardening in Al–Cu–Mg alloys revisited”, Scripta Materialia 54 pp.287-291 (2006)
[WAN3] S.C. Wang, M.J. Starink, “The assessment of GPB2/S'' structures in Al–Cu–Mg alloys”, Materials Science and Engineering A 386 pp.156-163 (2004)
[XIA] Peng Xia, Zhiyi Liu, Song Bai, Luqing Lu, Lifang Gao, “Enhanced fatigue crack propagation resistance in a superhigh strength Al–Zn–Mg–Cu alloy by modifying RRA treatment”, Materials Characterization 118 pp.438-445 (2016)
[XIE] F.Y. Xie, T. Kraft, “Microstructure and microsegregation in Al-rich Al-Cu-Mg alloys”, Acta Materialia Vol.47 Iss.2 pp.489-500 (1999)
[YEN] Chun-Hung Yen, Chih-Ting Wu, Yen-Hao Chen, Sheng-Long Lee, “Effects of annealing temperature on stress corrosion susceptibility of AA5083–H15 alloys”, Journal of Materials Research Vol.31 No.8 pp.1163-1170 (2016)
[ZHA] Zhang Peng, Chen Minghe, Xie Lansheng, “Effect of natural aging time on tensile properties and fracture of heat-treated AA2024-O Al-alloy”, Rare Metal Materials and Engineering Vol.49 Iss.3 pp.819-824 (2020)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊