(34.226.234.102) 您好!臺灣時間:2021/05/12 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林欣穎
研究生(外文):Hsin-Yin Lin
論文名稱:利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
論文名稱(外文):Fluoric self-assembled monolayer (F-SAM) enhanced electrical properties of graphene and MoS2
指導教授:蘇清源
指導教授(外文):Ching-Yuan Su
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:81
中文關鍵詞:自組裝膜石墨烯二硫化鉬
外文關鍵詞:self-assembled monolayergraphenemos2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
石墨烯載子遷移率常因基板上電荷散射、雜質及高分子殘留等因素,影響石墨烯的電性,為了改善此問題本實驗於基板上附著一層氟化自組裝膜,形成類似懸空結構的效果,以改善石墨烯之電性,目的是將石墨烯透過懸空的方式和平坦化於減少來自基板的影響,使石墨烯維持本質的性質。
本實驗透過四種不同氟化溶液比例測試得2 μl FDTS + 100 ml甲苯為最佳參數,分別使用浸泡法及旋轉塗佈法改質基板,此兩種方式皆可在短時間內成功改質基板,並且搭配乾式轉印的技術轉印石墨烯於基板上。綜合上述測試可獲得較低表面粗糙度,與未改質基板相比,表面粗糙度從2.27 nm降低至0.29 nm,證實氟化自組裝膜可以有效改善基板的表面粗糙度,而由霍爾量測儀探討石墨烯之電性,發現石墨烯載子遷移率從原本的894.6 cm2/Vs提升至1588cm2/Vs,約為原本的1.77倍,可歸因於以下幾個因素: (1)降低基板表面粗糙度,使轉印石墨烯減少應力破損和皺褶結構; (2)因自組裝膜之長鏈分子所產生的類懸空結構,避免基板對於石墨烯所導致的載子散射而影響其傳輸。此外,研究也發現所發展的乾式轉印技術,相較於傳統轉印,能降低薄膜的整體粗糙度達87.8 %,而因此載子遷移率有增加的趨勢。最後也討論將氟化改質基板應用於其它二維材料(二硫化鉬),發現對於n-型半導體,氟化改質基板的電荷極化,將使MoS2進行p-型改質,致使開電流和載子遷移率下降,可進一步驗證氟化基板改質於二維半導體材料的介面極化之機制。本研究對於未來二維材料的電子結構調製和元件整合將有更深入的了解。
Carrier mobility in graphene often affect the electronic properties, because of charge scattering, impurities, and polymer residues on the substrate. In order to resolve this problem, we use a self-assembled monolayer on the substrate which used to improve the electronic properties of graphene and avoids the influence of substrate factors, so that the graphene maintains the most basic properties.
In this experiment, there were four different fluoric solutions be tested, the results show 2 μl FDTS + 100 ml toluene was the optimal parameters between different fluoric solution ratio, then we uses dip-coating and spin-coating to modify the substrate, respectively. Thses two ways can modify the substrate in a short period of time, and using dry transfer to transfer graphene on the substrate. This results reveal that using F-SAM improves the surface roughness of the substrate from 2.27 nm to 0.29 nm. The electron mobility can improve from 894.6 cm2/Vs to 1588cm2/Vs, about 1.77 times higher than the unmodified substrate by using Hall measurement. This results can be attributed to the following factors. First and foremost, reducing the surface roughness of the substrate can reduce the transfer graphene under stress rupture and wrinkle structure. On the other hand, the half suspended structure generated by the long chain molecules of a self-assembled monolayer can prevent the carrier scattering caused by the substrate on the graphene and affect its transmission. In addition, the research also exhibited that dry transfer can reduce the overall roughness of the film by 87.8% compared to wet transfer, and therefore the carrier mobility has a rising tendency. Finally, we infer that the MoS2 on F-SAM maybe transferred to p-doping influenced on/off ratio and carry mobility will decrease, and therefore the mechanism of applying F-SAM modified substrate to the interfacial polarization of 2D semiconductor materials can be further verified. This study will get a deeper understanding of the electronic structure adjustment and device integration of 2D materials in the future.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
第二章 文獻回顧與研究動機 3
2.1 石墨烯成長方式 3
2.2 石墨烯轉印方式 4
2.2.1 濕式轉印 4
2.2.2 乾式轉印 5
2.3 懸空石墨烯 7
2.4 自組裝緩衝層 9
2.4.1 氟化層 11
2.4.2 氟化石墨烯 14
2.5 石墨烯拉曼光譜偏移 16
2.6 二維材料應用於自組裝膜 17
2.6.1 二硫化鉬 (MoS2) 17
2.6.2 二硒化鎢 (WSe2) 19
2.7 研究動機 21
第三章 研究架構與流程 22
3.1實驗藥品與儀器 22
3.1.1實驗藥品 22
3.1.2實驗儀器 24
3.1.3分析儀器 25
3.2 實驗架構與流程 26
3.2.1 石墨烯成長 27
3.2.2 改質基板方法 29
3.2.3 轉印方式 30
3.2.4 霍爾量測方式 32
第四章 結果與討論 33
4.1 石墨烯薄膜轉印於氟化改質基板 33
4.1.1不同前處理方式之比較 33
4.1.2 氟化溶液濃度測試 36
4.1.3 不同浸泡時間之比較 40
4.1.4 不同轉印方式之比較 43
4.1.5 旋轉塗佈法轉印於氟化改質基板 50
4.2 二硫化鉬薄膜轉印於氟化改質基板 52
4.2.1 二硫化鉬薄膜轉印方式探討 52
4.2.2 二硫化鉬薄膜下閘極元件電性 52
4.3.3 二硫化鉬轉印於氟化石墨烯薄膜 57
4.3 氟化自組裝膜性能探討 59
第五章 結論 60
第六章 未來工作 61
參考文獻 62
[1] Antonio C.N., Francisco G., Nuno M.P., Drawing conclusions from graphene, Physics World 2006, 19 (11), 33.
[2] Schwierz F., Graphene transistors, Nat. Nanotechnol. 2010, 5(7), 487-496.
[3] Ju M.J., Kim J.C., Choi H.J., Choi I.T., Kim S.G., Lim K., Ko J., Lee J.J. Jeon I.Y., Baek J.B., Kim H.K., N-doped graphene nanoplatelets as superior metal-free counter electrodes for organic dye-sensitized solar cells, Acs Nano 2013, 7(6), 5243-5250.
[4] Shao Y.Y., Wang J., Wu H., Liu J., Aksay I.A., Lin Y.H., Graphene based electrochemical sensors and biosensors: A review, Electroanalysis 2010, 22(10), 1027-1036.
[5] Das, S.; Pandey, D.; Thomas, J.; Roy, T., The role of graphene and other 2D materials in solar photovoltaics. Advanced Materials 2019, 31 (1), 1802722.
[6] Schwierz, F.; Pezoldt, J.; Granzner, R., Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7 (18), 8261-8283.
[7] Lin Y., Han X., Campbell C.J., Kim J.W., Zhao B., Luo W., Dai J., Hu L., Connell J. W., Holey graphene nanomanufacturing: structure, composition, and electrochemical properties. Adv. Funct. Mater. 2015, 25(19), 2920-2927.
[8] Tetlow, H.; Posthuma de Boer, J.; Ford, I. J.; Vvedensky, D. D.; Coraux, J.; Kantorovich, L., Growth of epitaxial graphene: Theory and experiment. Physics Reports 2014, 542 (3), 195-295.
[9] Muñoz, R.; Gómez-Aleixandre, C., Review of CVD Synthesis of Graphene. Chemical Vapor Deposition 2013, 19 (10-11-12), 297-322.
[10] Ciesielski, A.; Samorì, P., Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews 2014, 43 (1), 381-398.
[11] Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.
[12] Su, C.-Y.; Lu, A.-Y.; Xu, Y.; Chen, F.-R.; Khlobystov, A. N.; Li, L.-J., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano 2011, 5 (3), 2332-2339.
[13] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
[14] Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S.-S., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters 2008, 93 (11), 113103.
[15] Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano letters 2009, 9 (12), 4268-4272.
[16] Reina, A.; Son, H.; Jiao, L.; Fan, B.; Dresselhaus, M. S.; Liu, Z.; Kong, J., Transferring and identification of single-and few-layer graphene on arbitrary substrates. The Journal of Physical Chemistry C 2008, 112 (46), 17741-17744.
[17] Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters 2009, 9 (12), 4359-4363.
[18] Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology 2010, 5 (8), 574.
[19] JunáKim, B.; HoonáLee, S.; KyuáLim, H.; KyuáLee, D.; JooáJeong, B.; ChuláKim, H.; KiáYu, H., Design of softened polystyrene for crack-and contamination-free large-area graphene transfer. Nanoscale 2018, 10 (46), 21865-21870.
[20] Kang, J.; Shin, D.; Bae, S.; Hong, B. H., Graphene transfer: key for applications. Nanoscale 2012, 4 (18), 5527-5537.
[21] Zhang, Z.; Du, J.; Zhang, D.; Sun, H.; Yin, L.; Ma, L.; Chen, J.; Ma, D.; Cheng, H.-M.; Ren, W., Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature communications 2017, 8 (1), 1-9.
[22] Kim, J.; Park, H.; Hannon, J. B.; Bedell, S. W.; Fogel, K.; Sadana, D. K.; Dimitrakopoulos, C., Layer-Resolved Graphene Transfer via Engineered Strain Layers. Science 2013, 342 (6160), 833-836.
[23] Lee, J.-H.; Lee, E. K.; Joo, W.-J.; Jang, Y.; Kim, B.-S.; Lim, J. Y.; Choi, S.-H.; Ahn, S. J.; Ahn, J. R.; Park, M.-H.; Yang, C.-W.; Choi, B. L.; Hwang, S.-W.; Whang, D., Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science 2014, 344 (6181), 286-289.
[24] Fechine, G. J. M.; Martin-Fernandez, I.; Yiapanis, G.; Bentini, R.; Kulkarni, E. S.; Bof de Oliveira, R. V.; Hu, X.; Yarovsky, I.; Castro Neto, A. H.; Özyilmaz, B., Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon 2015, 83, 224-231.
[25] Lock, E. H.; Baraket, M.; Laskoski, M.; Mulvaney, S. P.; Lee, W. K.; Sheehan, P. E.; Hines, D. R.; Robinson, J. T.; Tosado, J.; Fuhrer, M. S.; Hernández, S. C.; Walton, S. G., High-Quality Uniform Dry Transfer of Graphene to Polymers. Nano Letters 2012, 12 (1), 102-107.
[26] Yang, S. Y.; Oh, J. G.; Jung, D. Y.; Choi, H.; Yu, C. H.; Shin, J.; Choi, C.-G.; Cho, B. J.; Choi, S.-Y., Metal-Etching-Free Direct Delamination and Transfer of Single-Layer Graphene with a High Degree of Freedom. Small 2015, 11 (2), 175-181.
[27] Adam, S.; Hwang, E.; Galitski, V.; Sarma, S. D., A self-consistent theory for graphene transport. Proceedings of the National Academy of Sciences 2007, 104 (47), 18392-18397.
[28] Ni, Z.; Ponomarenko, L.; Nair, R.; Yang, R.; Anissimova, S.; Grigorieva, I.; Schedin, F.; Blake, P.; Shen, Z.; Hill, E., On resonant scatterers as a factor limiting carrier mobility in graphene. Nano letters 2010, 10 (10), 3868-3872.
[29] Suk, J. W.; Lee, W. H.; Lee, J.; Chou, H.; Piner, R. D.; Hao, Y.; Akinwande, D.; Ruoff, R. S., Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano letters 2013, 13 (4), 1462-1467.
[30] Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y.-M.; Tulevski, G. S.; Tsang, J. C.; Avouris, P., Chemical doping and electron− hole conduction asymmetry in graphene devices. Nano letters 2009, 9 (1), 388-392.
[31] Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C.; McDonnell, S.; Colombo, L.; Vogel, E.; Ruoff, R.; Wallace, R., The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Applied Physics Letters 2011, 99 (12), 122108.
[32] Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H., Ultrahigh electron mobility in suspended graphene. Solid state communications 2008, 146 (9-10), 351-355.
[33] Bunch, J. S.; Van Der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L., Electromechanical resonators from graphene sheets. Science 2007, 315 (5811), 490-493.
[34] Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano letters 2008, 8 (3), 902-907.
[35] Lee, W. H.; Park, J.; Kim, Y.; Kim, K. S.; Hong, B. H.; Cho, K., Control of Graphene Field‐Effect Transistors by Interfacial Hydrophobic Self‐Assembled Monolayers. Advanced Materials 2011, 23 (30), 3460-3464.
[36] Ulman, A., Formation and structure of self-assembled monolayers. Chemical reviews 1996, 96 (4), 1533-1554.
[37] Ito, Y.; Virkar, A. A.; Mannsfeld, S.; Oh, J. H.; Toney, M.; Locklin, J.; Bao, Z., Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. Journal of the American Chemical Society 2009, 131 (26), 9396-9404.
[38] Ashurst, W.; Carraro, C.; Maboudian, R., Self-assembled monolayers as anti-stiction coating for MEMS: Characteristics and recent progress. Sensors Actuators 2000, 219-223
[39] Zhuang, Y. X.; Hansen, O.; Knieling, T.; Wang, C.; Rombach, P.; Lang, W.; Benecke, W.; Kehlenbeck, M.; Koblitz, J., Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS. Journal of Microelectromechanical Systems 2007, 16 (6), 1451-1460.
[40] Tu, Q.; Kim, H. S.; Oweida, T. J.; Parlak, Z.; Yingling, Y. G.; Zauscher, S., Interfacial mechanical properties of graphene on self-assembled monolayers: Experiments and simulations. ACS applied materials & interfaces 2017, 9 (11), 10203-10213.
[41] Li, Y.; Xu, C.-Y.; Hu, P.; Zhen, L., Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS nano 2013, 7 (9), 7795-7804.
[42] Chen, S.-Y.; Ho, P.-H.; Shiue, R.-J.; Chen, C.-W.; Wang, W.-H., Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates. Nano letters 2012, 12 (2), 964-969.
[43] Wang, B.; Huang, M.; Tao, L.; Lee, S. H.; Jang, A.-R.; Li, B.-W.; Shin, H. S.; Akinwande, D.; Ruoff, R. S., Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS nano 2016, 10 (1), 1404-1410.
[44] Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; Shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y., Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nature materials 2004, 3 (5), 317-322.
[45] Yan, Z.; Sun, Z.; Lu, W.; Yao, J.; Zhu, Y.; Tour, J. M., Controlled modulation of electronic properties of graphene by self-assembled monolayers on SiO2 substrates. ACS nano 2011, 5 (2), 1535-1540.
[46] Ho, K. I.; Boutchich, M.; Su, C. Y.; Moreddu, R.; Marianathan, E. S. R.; Montes, L.; Lai, C. S., A Self‐Aligned High‐Mobility Graphene Transistor: Decoupling the Channel with Fluorographene to Reduce Scattering. Advanced Materials 2015, 27 (41), 6519-6525.
[47] Tsoukleri, G.; Parthenios, J.; Papagelis, K.; Jalil, R.; Ferrari, A. C.; Geim, A. K.; Novoselov, K. S.; Galiotis, C., Subjecting a graphene monolayer to tension and compression. small 2009, 5 (21), 2397-2402.
[48] Lv, R.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y.; Mallouk, T. E.; Terrones, M., Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Accounts of chemical research 2015, 48 (1), 56-64.
[49] Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F., Emerging photoluminescence in monolayer MoS2. Nano letters 2010, 10 (4), 1271-1275.
[50] Coleman, J.N., M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi, Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331 (6017), 568-571.
[51] Alper Gurarslan, Yifei Yu, Liqin Su, Yiling Yu, Francisco Suarez, Shanshan Yao, Yong Zhu, Mehmet Ozturk, Yong Zhang and Linyou Cao. Surface-Energy-Assisted Perfect Transfer of Centimeter-Scale Monolayer and Few-Layer MoS2 Films onto Arbitrary Substrates. ACS Nano 2014, 8, 11, 11522-11528.
[52] Stoeckel, M.-A.; Gobbi, M.; Leydecker, T.; Wang, Y.; Eredia, M.; Bonacchi, S.; Verucchi, R.; Timpel, M.; Nardi, M. V.; Orgiu, E., Boosting and Balancing Electron and Hole Mobility in Single-and Bilayer WSe2 Devices via Tailored Molecular Functionalization. ACS nano 2019, 13 (10), 11613-11622.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔