(3.236.118.225) 您好!臺灣時間:2021/05/17 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘則銨
研究生(外文):Tse-An Pan
論文名稱:微量鋯與冷加工對Al-8.3Zn-2.3Mg-2.4Cu鋁合金微結構與淬火敏感性影響
論文名稱(外文):Effect of trace Zr and cold deformation on mechanical properties and quench sensitivity of Al-8.3Zn-2.3Mg-2.4Cu alloys
指導教授:李勝隆李勝隆引用關係
指導教授(外文):Sheng-Long Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:57
中文關鍵詞:Al-Zn-Mg-Cu合金冷加工Al3Zr淬火敏感性再結晶
外文關鍵詞:Al-Zn-Mg-Cu alloycold workingAl3Zrquench sensitivityrecrystallization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以光學顯微鏡、導電度、穿透式電子顯微鏡、電子背向散射繞射、機械性質等量測,來評估微量Zr(≤ 0.2)與冷加工(≤ 20%)對Al-8.3Zn-2.3Mg-2.4Cu鍛造鋁合金微結構與淬火敏感性之影響。透過EBSD觀察,不含Zr之合金在低冷加工量下擁有最大之晶粒(~ 4400 μm2),在高冷加工量下晶粒明顯細化(~ 1200 μm2),都呈現完全再結晶之等軸晶粒。含Zr合金則不論是低或高冷加工量下,都呈現細長的織狀晶,平均晶粒都不超過830 μm2,且含Zr合金再結晶比率都低於50%,顯現加入Zr能有效抑制再結晶的發生、與抑制晶粒的成長,使得合金具有細小且具明顯方向性之晶粒。由拉伸性質分析可以觀察到,細小的晶粒提升了合金之強度,且當晶粒愈細長,材料延性愈佳。經端面淬火試驗顯示不論冷加工量多寡,不含Zr合金之淬火敏感性都不高,在固溶空冷下,僅在晶界處異質成核,析出較粗大之非強化η (MgZn2)相。而含Zr合金因均質化所析出之Al3Zr細小安定顆粒,在高冷加工下,Al3Zr與鋁基地之介面為具較高能量之非整合界面,此非整合界面極易成為固溶淬火過程中的強化溶質原子之異質成核點,當固溶空冷過程中(慢速冷卻),Al3Zr顆粒周圍將析出η相,因而降低後續時效時的η’強化相之析出,因而提升了合金之淬火敏感性,導致合金強度減損;而當低冷加工下,Al3Zr與鋁基地介面為低能量之整合介面,合金並無明顯淬火敏感性。
This study is aimed at exploring the effects of trace Zr and cold rolling on the microstructures and quench sensitivity of Al-8.3Zn-2.3Mg-2.4Cu alloys. The result showed that adding Zr could effectively inhibit recrystallization and grain growth. Making the microstructures have fine and directional grains. From the analysis of microstructure and tensile properties, it could be observed that the fine grains increase the strength of the alloy. Meanwhile, the materials have a better ductility when the grains are more elongate. The quenching test showed that no matter how much cold rolling ratio was, the quench sensitivity without Zr alloy was not high. The alloys containing Zr with low cold rolling ratio also didn’t have quench sensitivity. However, the alloys containing Zr with high cold rolling ratio had a high quench sensitivity. When Zr containing alloy applied a high cold rolling ratio, the interface between the Al3Zr particles and the matrix was a semi-coherent interface with higher energy. This semi-coherent interface can easily become the heterogeneous nucleation point of solute atoms during quenching process. By the observation of TEM, with a slow cooling rate after solid solution, η phase will be precipitated around Al3Zr particles. The precipitate of η phase will reduce the precipitation of η’ strengthened phase during subsequent aging, leading to the reduction of alloy strength. On the other hand, under low cold working volume, the interface between Al3Zr and the matrix was coherent with low energy, and the alloy had no obvious quench sensitivity.
摘要 I
Abstract II
總目錄 IV
圖目錄 VII
表目錄 IX
一、前言與文獻回顧 1
1.1前言 1
1.2鋁合金簡介 3
1.3Al-Zn-Mg-Cu合金簡介 4
1.4 Al-Zn-Mg-Cu合金之熱處理 5
1.5過渡元素添加7000系鋁合金之影響 10
1.5.1鋯對7000系鋁合金再結晶之影響 11
1.5.2鋯對7000系鋁合金淬火敏感性之影響 12
1.7加工量與微結構之關係 14
1.8實驗目的 15
二、實驗步驟 16
2.2均質化、熱加工與退火 17
2.3 冷輥軋與T6熱處理 18
2.3 微結構觀察 18
2.3.1 光學顯微鏡(Optical microscopy, OM) 19
2.3.2導電度測試 19
2.3.3電子背向散射繞射(Electron Back-Scattered Diffraction, EBSD) 19
2.3.4穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 20
2.4機械性質 20
2.4.1硬度試驗(Hardness, HRB) 20
2.4.2拉伸試驗 20
2.4.3端面淬火試驗 21
三、結果與討論 22
3.1微結構觀察 22
3.1.1 鑄態、均質化與熱加工OM觀察 22
3.1.2 T6態合金OM觀察 25
3.1.3電子背像散射繞射(EBSD)分析 27
3.1.4穿透式電子顯微鏡(TEM)微結構分析 31
3.1.5導電度量測 35
3.2淬火敏感性試驗 38
3.3機械性質測試 39
四、結論 41
五、參考資料 42
[AMS] AMS4337, “Aluminum Alloy, Extruded Profiles (7055-T77511) 8.0Zn - 2.3Cu - 2.0Mg - 0.16Zr Solution Heat Treated, Stress Relieved, and Overaged”, 1998.
[ASM1] J.R.Davis, “ASM Speciality Handbook: Aluminum and Aluminum Alloys”, ASM International, p.4, 1993.
[ASM2] J.R.Davis, “ASM Speciality Handbook: Heat Treating of Aluminum Alloys”, ASM International, p.841, 1993.
[ASTM1] ASTM B918M-09, “Standard Practice for Heat Treatment of Wrought Aluminum Alloys”, 2009.
[ASTM2] ASTM B557M-15, “Standard Test Methods of Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products”, 2015.
[ASTM3] ASTM A255-10, “Standard Test Methods for Determining Hardenability of Steel”, 2018.
[ASTM4] ASTM E1558-09, “Standard Guide for Electrolytic Polishing of Metallographic Specimens”, 2014.
[ASTM5] ASTM E18-E18a, “Standard Test Methods for Rockwell Hardness of Metallic Metals”, 2018.
[BHA] J.J. Bhattacharyya, S.R. Agnew, “Measuring and modeling the anisotropic, high strain rate deformation of Al alloy,7085, plate in T711 temper”, International Journal of Plasticity, vol. 93, pp. 46-63, 2017.
[CHA] Chan, H. M., Humphreys, F. J., “Effect of particle stimulated nucleation on orientation of recrystallized grains”, Metal Science, Vol.18, pp.527-529,1984.
[CHIU] Chiu, Y.-C., Du, K.-T., Lee, S.-L. “The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al–Zn–Mg–Cu alloys”, Materials Chemistry and Physics, vol.247, 2020.
[DAV] V.G. Davydov, T.D. Rostova, “Scientific principles of making an alloying addition of scandium to aluminium alloys”, Materials Science and Engineering A, vol. 280, pp. 30-36, 2000.
[DOU] Peng Dou, Akihiko Kimura,” TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition”, Journal of Nuclear Materials, vol. 444, pp. 441-454, 2014.
[DUR] Tolga Dursun,Costas Soutis, “Recent developments in advanced aircraft aluminum alloys”, Materials & Design, vol.56, pp. 862–871, 2014.
[GOR]Goroh Itoh, Takehiko Eto, Yoshimitsu Miyagi and Motohiro Kanno, “Al-Zn-Mg alloys”, Jstage, vol. 38 No.12, pp. 818-839, 1988.
[GUO] Z. Guo, G.Zhao, X.G. Chen, “Effect of two-step homogenization on precipitation behavior of Al3Zr dispersoids and recrystallization resistance in 7150 aluminum alloy”, Mterials Characterization, vol. 102, pp. 122-130, 2015.
[IWA] S. Iwamura, Y. Miura, “Loss in coherency and coarsening behavior of Al3Sc precipitates”, Acta Materialia, vol. 52, pp. 591-600, 2004.
[JIA] M. Jia, Z. Zheng, Z. Gong, “Microstructure evolution of the 1469 Al-Cu-Li-Sc alloy during homogenization”, Journal of Alloys and Compounds, vol. 64, pp. 131-139, 2014.
[JIN] Jing Liu, Pei Yao, “Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys”, Journal of Alloys and Compounds, vol. 657, pp. 717-725, 2016.
[JOH] John E. Hatch, “Aluminum: properties and PhysicalMetallurgy”, AmericanSociety for Metals, USA, p. 146, 1984.
[KNI] Keith E. Knipling, David C. Dunand. “Criteria for developing castable, creep-resistant aluminum-based alloys – A review”. Zeitschrift für Metallkunde, vol. 97, no. 3, pp. 246-265, 2006.
[LIM] S.T. Lim, S.J. Yun, “Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications, Materials Science and Engineering A”, vol. 371, pp. 82-90, 2004.
[LIN] Huaqiang Lin, Yulong Wua, Shengdan Liu, “Effect of cooling conditions on microstructure and mechanical properties of friction stir welded 7055 aluminium alloy joints Materials Characterization”, vol. 141, pp. 74-85, 2018.
[LIT] L. LITYÑSKA, D. ABOU-RAS, “TEM and HREM study of Al3Zr precipitates in an Al-Mg-Si-Zr alloy”, Journal of Microscopy, 2006.
[LIU1] Shengdan Liu, Wenjun Liu. “Effect of microstructure on the quench sensitivity of AlZnMgCu alloys”, Journal of Alloys and Compounds, vol. 507, pp. 53-61, 2010.
[LIU2] S.D. Liu, X.M. Zhang. “Influence of aging on quench sensitivity effect of 7055 aluminum alloy”, Materials Characterization, vol. 59, pp. 53-60, 2008.
[MAR] J. W. Martin, "Micromechanisms in Particle-hardened Alloys", Cambridge University Press, p. 78, 1980.
[MAZ] F.M.Mazzolani, ‘’Aluminum Structural Design”, Springer-Verlag Wien, pp.16-18, 2003.
[PRO] Laurent Proville, Alphonse Finel,”Kinetics of the coherent order-disorder transition in Al3Zr”, PHYSICAL REVIEW B, vol. 64, 2001.
[ROB]Robert E.Reed-Hill, Reza Abbaschian, Lara Abbaschian, “Physical Metallurgy Principles, 4th edtion’’, p. 237, 2010.
[ROM] P. A. ROMETSCH, Yong ZHANG, Steven KNIGHT,” Heat treatment of 7xxx series aluminum alloys— Some recent developments”, Trans. Nonferrous Met. Soc. China, vol. 24, pp. 2003−2017, 2014.
[SCH] M. Scho‥bel, P. Pongratz, “Coherency loss of Al3(Sc,Zr) precipitates by deformation of an Al–Zn–Mg alloy”, Acta Materialia, vol. 60, pp. 4247-4254, 2012.
[SHA] Gang Sha, Alfred Cerezo, “Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050)”, Acta Materialia, vol. 52, pp. 4503–4516, 2004.
[SON] Liang Liang Song, Shaojun Liu. “A new method for fast statistical measurement of interfacial misfit strain around nano-scale semi-coherent particles”, RSC Advances, 2017.
[SU] Qian Su, Jie Xu, Huan Yu, “Effect of Grain Size on Formability and Deformation Mechanism of High-Purity Aluminum during Micro-Embossing Process at Elevated Temperature”, Advanced Engineering Materials, vol.21, 2019.
[TAN] J.G. Tang, H.Chen, X. M. Zhang, “Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy”, Transactions of Nonferrios Metals Society of Cina, vol. 22, pp. 1255-1263, 2012.
[ZHI] JIA Zhi-hong, Jean-Philippe COUZINIE, “Precipitation behaviour of Al3Zr precipitate in Al-Cu-Zr and Al-Cu-Zr-Ti-V alloys”, Trans. Nonferrous Met. Soc. China, pp. 1860-1865, 2012.
[ZHAO] Jiuhui Zhao, Yunlai Deng, “Effects of Initial Grain Size of Al-Zn-Mg-Cu Alloy on the Recrystallization Behavior and Recrystallization Mechanism in Isothermal Compression”, Metals, 2019.
[ZHEN] Liang Zhen,, Junzhou Chen, Shoujie Yang, Wenzhou Shao, Shenglong Dai, “Development of microstructures and texture during cold rolling in AA 7055aluminum alloy’’, Materials Science and Engineering A ,vol. 504,pp. 55–63, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top