(3.210.184.142) 您好!臺灣時間:2021/05/13 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈芳茹
研究生(外文):Fang-Ru Shen
論文名稱:基於光感三維生物列印之路徑導引式噴頭開發
論文名稱(外文):Development of Path Guiding Nozzle for 3D Photocrosslinking-Based Bioprinting Technology
指導教授:廖昭仰
指導教授(外文):Chao-Yaug Liao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:89
中文關鍵詞:組織工程組織工程支架3D 生物列印機光交聯導引式噴頭
外文關鍵詞:Tissue engineeringTissue engineering scaffold3D bioprinterPhotocrosslinkingGuided nozzle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
三維生物列印是一門結合組織工程與積層製造的技術,利用生物墨水當作材料來堆積出生物組織的外形結構,並把細胞佈署在適當的位置進行培養,希望能複製出所需的組織或器官,以解決現今器官短缺的問題。在製造方面,積層製造技術擁有快速客製化的優勢,可製作出多孔性且複雜外型輪廓的組織工程支架,能促進材料中的細胞增殖與分化,誘導活體組織再生修復。
本研究以甲基丙烯酸酐化明膠(Gelatin Methacrylate, GelMA)作為目標材料,發展光交聯類型之三維生物列印技術。光交聯形式之三維生物列印常使用紫外光為光源,支架成形過程中經常因為長時間在紫外光下曝光而接收過多光能量,最終導致材料中的細胞病變或死亡。為了解決此問題,本研究設計一組路徑導引式噴頭,將紫外光使用顯微物鏡聚焦成一點,在焦點前方利用噴頭將生物墨水隨著預定位置擠出,隨後立即使其被交聯,並且利用C#Program撰寫一套演算法與人機介面。在光源的部分則設計了兩種模組,分別是利用單光子進行光交聯的UV-LED模組,以及雙光子吸收聚合的飛秒雷射模組。此外考慮到GelMA對溫度敏感度較高,因此在放置料桶的一端設計成加熱套的形式,可即時監控生物墨水的擠出溫度,來提升列印品質。
為了驗證此次設計之噴頭的列印可行度,本研究比對了演算法的路徑規劃與實際列印情況並討論之。從觀察轉角處列印情況可知,擠料線段雖符合指定路徑,但因材料的黏度較低,擠出線段容易流動而影響精度。在材料的部分,則利用不同重量百分比濃度的GelMA與光起始劑進行實驗,觀察UV-LED輸出功率與曝光時間的關係。結果表明,越高濃度的GelMA以及光起始劑所須曝光時間較短,但兩者的添加劑量皆有上限,且根據配方的不同,材料所需的固化能量值是固定的。最後再利用最佳比例12 wt%GelMA進行方形與圓形之簡易列印,初步成功列印出兩層結構。
Three-dimensional bio-printing is a technology that combines tissue engineering and additive manufacturing. It uses biological ink to stack into the shape of biological tissue, and deploys the cells in an appropriate position for cultivation to solve the current shortage of organs. In manufacturing, additive manufacturing technology has the advantage of rapid customization. It can make tissue engineering scaffold with high porosity and complex shape. Also, it can promote cell proliferation and differentiation in the material, and induce tissue regeneration and repair.
In this study, methacrylic anhydride gelatin (GelMA) was used as the target material to develop photo-crosslinking of 3D bio-printing. The light source often uses UV light, so it often change or die because it receives too much energy from UV light for long time. In order to solve this problem, this study design the Path Guiding Nozzle. It can focus the UV light into a point using a microscopic objective lens, and push the bio-ink in the predetermined position by the nozzle. Then the material can be crosslinked. This study also develop algorithms and the user interface by C # Program. Two types of modules are designed on the light source, which are the UV-LED module that uses a single photon for photo-crosslinking, and the femtosecond laser modules that use two-photon polymerization. They can be focused into a point through the microscope objective and irradiate the material to produce cross-linking. In addition, the characteristics of GelMA are highly sensitive for temperature, so the end of the material container is designed as a heating jacket. It can monitor the temperature in real time to improve print quality.
In terms of printing feasibility, this study discusses the path of the algorithm and the results of printing. Although the line meets the target, it is less smooth and affects the accuracy due to the lower viscosity of the material. For materials, we find out the relationship between UV-LED output power and exposure time with GelMA and photoinitiator. Under the same power of UV, the results show that the higher the concentration of GelMA and the photoinitiator, the shorter the exposure time. However, there is an upper limit on the dosage of both. And the curing energy value is fixed by different settings. It successfully prints round and rectangular structures, the number of layers can reach two layers using 12 wt% GelMA.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 10
1-4 論文架構 11
第二章 研究與理論說明 12
2-1 組織工程簡介 12
2-2 光子吸收現象與光致聚合反應 14
2-3 光感技術用於組織工程類型介紹 17
2-4 組織工程支架材料 26
2-5 前代三維生物列印系統簡介 27
第三章 系統架構與實驗方法 31
3-1 路徑導引式噴頭之機構設計 31
3-2 路徑導引式噴頭之光學模組設計 36
3-3 旋轉方位與路徑演算法發展 41
3-4 列印材料介紹 48
3-5 實驗流程與方法 49
第四章 實驗結果與討論 54
4-1 人機介面 54
4-2 路徑導引式噴頭之性能與轉動慣量分析 56
4-3 GelMA重量百分濃度對於紫外光輸出功率與曝光時間之影響 59
4-4 光起始劑濃度對於輸出功率與曝光時間之影響 61
4-5 列印可行度 62
第五章 結論與未來展望 67
5-1 結論 67
5-2 未來展望 67
第六章 參考文獻 69
[1] Hull, C. W. (1986). Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent No. US4575330A.
[2] Morris, V. B., Nimbalkar, S., Younesi, M., McClellan, P., & Akkus, O. (2017). Mechanical properties, cytocompatibility and manufacturability of chitosan: PEGDA hybrid-gel scaffolds by stereolithography. Annals of biomedical engineering, 45(1), 286-296.
[3] Göppert-Mayer, M. (2009). Elementary processes with two quantum transitions. Annalen der Physik, 18(7‐8), 466-479.
[4] Kaiser, W., & Garrett, C. G. B. (1961). Two-photon excitation in Ca F_2: Eu^(2+). Physical review letters, 7(6), 229.
[5] Denk, W., Strickler, J. H., & Webb, W. W. (1990). Two-photon laser scanning fluorescence microscopy. Science, 248(4951), 73-76.
[6] Kjærgaard, N., Hornekær, L., Thommesen, A. M., Videsen, Z., & Drewsen, M. (2000). Isotope selective loading of an ion trap using resonance-enhanced two-photon ionization. Applied Physics B, 71(2), 207-210
[7] Gao, D., Agayan, R. R., Xu, H., Philbert, M. A., & Kopelman, R. (2006). Nanoparticles for two-photon photodynamic therapy in living cells. Nano letters, 6(11), 2383-2386.
[8] Maruo, S., & Kawata, S. (1998). Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication. Journal of microelectromechanical systems, 7(4), 411-415.
[9] Maruo, S., Nakamura, O., & Kawata, S. (1997). Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics letters, 22(2), 132-134.
[10] Bertsch, A., Zissi, S., Jezequel, J. Y., Corbel, S., & Andre, J. C. (1997). Microstereophotolithography using a liquid crystal display as dynamic mask-generator. Microsystem technologies, 3(2), 42-47.
[11] Hornbeck, L. J. (1997). Digital light processing for high-brightness high-resolution applications. In Projection Displays III , 3013, 27-40.
[12] Zhu, W., Ma, X., Gou, M., Mei, D., Zhang, K., & Chen, S. (2016). 3D printing of functional biomaterials for tissue engineering. Current opinion in biotechnology, 40, 103-112.
[13] Zhang, A. P., Qu, X., Soman, P., Hribar, K. C., Lee, J. W., Chen, S., & He, S. (2012). Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Advanced materials, 24(31), 4266-4270.
[14] Lewis, J. A., & Gratson, G. M. (2004). Direct writing in three dimensions. Materials today, 7(7-8), 32-39.
[15] Kollamaram, G., Croker, D. M., Walker, G. M., Goyanes, A., Basit, A. W., & Gaisford, S. (2018). Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. International journal of pharmaceutics, 545(1-2), 144-152.
[16] Negro, A., Cherbuin, T., & Lutolf, M. P. (2018). 3D inkjet printing of complex, cell-laden hydrogel structures. Scientific reports, 8(1), 1-9.
[17] Barry III, R. A., Shepherd, R. F., Hanson, J. N., Nuzzo, R. G., Wiltzius, P., & Lewis, J. A. (2009). Direct‐write assembly of 3D hydrogel scaffolds for guided cell growth. Advanced materials, 21(23), 2407-2410.
[18] Hon, K. K. B., Li, L., & Hutchings, I. M. (2008). Direct writing technology—Advances and developments. CIRP annals, 57(2), 601-620.
[19] Lebel, L. L., Aissa, B., Khakani, M. A. E., & Therriault, D. (2010). Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils. Advanced Materials, 22(5), 592-596.
[20] Zhuang, P., Ng, W. L., An, J., Chua, C. K., & Tan, L. P. (2019). Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. PloS one, 14(6), e0216776.
[21] Liu, J., Li, L., Suo, H., Yan, M., Yin, J., & Fu, J. (2019). 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Materials & Design, 171, 107708.
[22] O'brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials today, 14(3), 88-95.
[23] Chung, C., & Burdick, J. A. (2008). Engineering cartilage tissue. Advanced drug delivery reviews, 60(2), 243-262.
[24] Lanza, R., Langer, R., Vacanti, J. P., & Atala, A. (Eds.). (2020). Principles of tissue engineering. Academic press.
[25] Murphy, C. M., Haugh, M. G., & O'brien, F. J. (2010). The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 31(3), 461-466.
[26] Murphy, C. M., & O’Brien, F. J. (2010). Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell adhesion & migration, 4(3), 377-381.
[27] Boyd, R. W. (2019). Nonlinear optics. Academic press.
[28] Belfield, K. D., Yao, S., & Bondar, M. V. (2008). Two-photon absorbing photonic materials: From fundamentals to applications. Advances in polymer science, 213, 97-156.
[29] Colasante, C., Sanford, Z., Garfein, E., & Tepper, O. (2016). Current trends in 3D printing, bioprosthetics, and tissue engineering in plastic and reconstructive surgery. Current Surgery Reports, 4(2), 6.
[30] Selimis, A., Mironov, V., & Farsari, M. (2015). Direct laser writing: Principles and materials for scaffold 3D printing. Microelectronic Engineering, 132, 83-89.
[31] Kim, J. D., & Lee, Y. G. (2016). Improvement of distortion error for fabricating precision microparts using two-photon photopolymerization. Journal of Micromechanics and Microengineering, 26(7), 075012.
[32] Hafez, M., Sidler, T., & Salathe, R. P. (2003). Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner. Optical Engineering, 42(4), 1048-1057.
[33] Lim, T. W., Son, Y., Yang, D. Y., Kong, H. J., Lee, K. S., & Park, S. H. (2008). Highly effective three-dimensional large-scale microfabrication using a continuous scanning method. Applied Physics A, 92(3), 541.
[34] Rekštytė, S., Žukauskas, A., Purlys, V., Gordienko, Y., & Malinauskas, M. (2013). Direct laser writing of 3D polymer micro/nanostructures on metallic surfaces. Applied Surface Science, 270, 382-387.
[35] Knowlton, S., Yenilmez, B., Anand, S., & Tasoglu, S. (2017). Photocrosslinking-based bioprinting: Examining crosslinking schemes. Bioprinting, 5, 10-18.
[36] Cui, X., Breitenkamp, K., Finn, M. G., Lotz, M., & D'Lima, D. D. (2012). Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A, 18(11-12), 1304-1312.
[37] Gao, G., Schilling, A. F., Yonezawa, T., Wang, J., Dai, G., & Cui, X. (2014). Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnology journal, 9(10), 1304-1311.
[38] D O’Connell, C., Di Bella, C., Thompson, F., Augustine, C., Beirne, S., Cornock, R., Richards, C, J., Chung, J., Gambhir, S., Yue, Z., Bourke, J., Zhang, B., Taylor, A., Quigley, A., Kapsa, R., Choong, P., & Wallace, G,G. (2016). Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication, 8(1), 015019.
[39] Fedorovich, N. E., Swennen, I., Girones, J., Moroni, L., Van Blitterswijk, C. A., Schacht, E., Alblas, J., & Dhert, W. J. (2009). Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules, 10(7), 1689-1696.
[40] Trachtenberg, J. E., Placone, J. K., Smith, B. T., Piard, C. M., Santoro, M., Scott, D. W., Fischer, J. P., & Mikos, A. G. (2016). Extrusion-based 3D printing of poly (propylene fumarate) in a full-factorial design. ACS Biomaterials Science & Engineering, 2(10), 1771-1780.
[41] Bertassoni, L. E., Cardoso, J. C., Manoharan, V., Cristino, A. L., Bhise, N. S., Araujo, W. A., Zorlutuna, P., Vrana, N. E., Ghaemmaghami, A. M., Dokmeci, M. R., & Khademhosseini, A. (2014). Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 6(2), 024105.
[42] Colosi, C., Shin, S. R., Manoharan, V., Massa, S., Costantini, M., Barbetta, A., Dokmeci, M. R., Dentini, M., & Khademhosseini, A. (2016). Microfluidic bioprinting of heterogeneous 3D tissue constructs using low‐viscosity bioink. Advanced materials, 28(4), 677-684.
[43] Ozbolat, I. T., & Hospodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76, 321-343.
[44] Tangsadthakun, C., Kanokpanont, S., Sanchavanakit, N., Banaprasert, T., & Damrongsakkul, S. (2006). Properties of collagen/chitosan scaffolds for skin tissue engineering. Journal of Metals, Materials and Minerals, 16(1), 37-44.
[45] Mohan, N., & Nair, P. D. (2005). Novel porous, polysaccharide scaffolds for tissue engineering applications. Trends Biomater Artif Organs, 18(2), 219-224.
[46] Ji, C., Annabi, N., Khademhosseini, A., & Dehghani, F. (2011). Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO_2. Acta Biomaterialia, 7(4), 1653-1664.
[47] Baier Leach, J., Bivens, K. A., Patrick Jr, C. W., & Schmidt, C. E. (2003). Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnology and bioengineering, 82(5), 578-589.
[48] Ovsianikov, A., Deiwick, A., Van Vlierberghe, S., Dubruel, P., Möller, L., Dräger, G., & Chichkov, B. (2011). Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules, 12(4), 851-858.
[49] Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical reviews, 101(7), 1869-1880.
[50] Tan, H., & Marra, K. G. (2010). Injectable, biodegradable hydrogels for tissue engineering applications. Materials, 3(3), 1746-1767.
[51] Nuttelman, C. R., Rice, M. A., Rydholm, A. E., Salinas, C. N., Shah, D. N., & Anseth, K. S. (2008). Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Progress in polymer science, 33(2), 167-179.
[52] Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24(24), 4337-4351.
[53] Gutowska, A., Jeong, B., & Jasionowski, M. (2001). Injectable gels for tissue engineering. The Anatomical Record: An Official Publication of the American Association of Anatomists, 263(4), 342-349.
[54] Nguyen, K. T., & West, J. L. (2002). Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23(22), 4307-4314.
[55] Hou, Q., Paul, A., & Shakesheff, K. M. (2004). Injectable scaffolds for tissue regeneration. Journal of Materials Chemistry, 14(13), 1915-1923.
[56] Krishnakumar, G. S., Sampath, S., Muthusamy, S., & John, M. A. (2019). Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: a systematic review. Materials Science and Engineering: C, 96, 941-954.
[57] 洪承暉。(2018)。使用微型閥並具備自動平台校正功能之三維生物列印機開發,國立中央大學,碩士論文。
[58] Park, S. H., Yang, D. Y., & Lee, K. S. (2009). Two-photon stereolithography for realizing ultraprecise three‐dimensional nano/microdevices. Laser & Photonics Reviews, 3(1-2), 1-11.
[59] Bieda, M., Bouchard, F., & Lasagni, A. F. (2016). Two-photon polymerization of a branched hollow fiber structure with predefined circular pores. Journal of Photochemistry and Photobiology A: Chemistry, 319, 1-7.
[60] Park, S. H., Lim, T. W., Yang, D. Y., Yi, S. W., Kong, H. J., & Lee, K. S. (2005). Direct nano-patterning methods using nonlinear absorption in photopolymerization induced by a femtosecond laser. Journal of Nonlinear Optical Physics & Materials, 14(03), 331-340.
[61] Occhetta, P., Sadr, N., Piraino, F., Redaelli, A., Moretti, M., & Rasponi, M. (2013). Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning. Biofabrication, 5(3), 035002.
[62] Liu, W., Heinrich, M. A., Zhou, Y., Akpek, A., Hu, N., Liu, X., Guan, X., Jin, X., Khademhosseini, A., Zhang, Y. S., & Zhang, Y, S.(2017). Extrusion bioprinting of shear‐thinning gelatin methacryloyl bioinks. Advanced healthcare materials, 6(12), 1601451.
[63] Han, W. T., Jang, T., Chen, S., Chong, L. S. H., Jung, H. D., & Song, J. (2020). Improved cell viability for large-scale biofabrication with photo-crosslinkable hydrogel systems through a dual-photoinitiator approach. Biomaterials science, 8(1), 450-461.
電子全文 電子全文(網際網路公開日期:20250801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔