(3.236.222.124) 您好!臺灣時間:2021/05/10 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳文決
研究生(外文):TRAN VAN QUYET
論文名稱:內嚙合珩磨加工圓柱齒輪與螺桿轉子方法之 研究
論文名稱(外文):A Study on Internal-Meshing Honing Methods of Cylindrical Gears and Screw Rotors
指導教授:吳育仁吳育仁引用關係
指導教授(外文):Yu-Ren Wu
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:106
中文關鍵詞:珩磨機齒面修形雙鼓型修整齒輪珩磨螺桿轉子珩磨
外文關鍵詞:Honing machinetooth modificationdouble crowninggear honingscrew rotor honing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
珩齒(gear honing)是目前齒輪精加工方法之一,已證實可用於改善齒面接觸特性並減少齒輪嚙合噪音及振動。為了掌握及開發珩齒加工之關鍵技術,本論文創新地提出適用於圓柱齒輪與螺桿轉子之內嚙合珩齒加工方法。首先,針對具長齒面螺旋齒輪同時與另外兩個齒輪嚙合之特殊應用,提出一種利用CNC內嚙合珩齒機進行雙導程鼓型齒面修整(dual lead-crowning)之創新方法,通過控制珩磨輪傾角(swivel angle)及珩磨輪轉角,達成在同一長齒面具有兩個導程鼓型修整之圓柱齒輪齒面。其次,更提出應用CNC內嚙合珩齒機進行閉迴路圓柱齒輪齒面拓撲修整之數學模型,通過施予多項式形式之附加運動於珩磨輪傾角、珩磨輪徑向運動及工件齒輪轉角,並建立多項式係數與齒面法向誤差之敏感度矩陣(sensitivity matrix),研究中採用 Levenberg-Marquardt(LM)演算法進行閉迴路疊代計算,以得到最終所需之機台各軸運動方程式,並加工出具有抗扭曲(anti-twisted)、雙鼓型(double-crowned)之圓柱齒輪齒面。最後,提出了一種可用於精磨雙螺桿壓縮機轉子之內嚙合珩齒加工方法,在珩磨過程中,螺桿轉子和珩磨輪間的嚙合類似於一對少齒差、低齒數之交錯軸內嚙合螺旋齒輪,此一創新應用預期具有大幅縮短精磨螺桿加工時間之發展潛力。
Internal-meshing gear honing process is currently one of the economical finishing methods to localize and stabilize the tooth contact pattern and reduce noise and vibration of gear systems. This dissertation proposes novel honing methods for cylindrical gears and screw rotors. For improving the gear contact performance, gears with tooth modification can effectively avoid the edge contact and improve the contact load distribution. The mathematical models are proposed for two novel tooth modification methods of helical gears with internal-meshing gear honing. In the first model, for the special case of a long face-width helical gear meshing with two gears simultaneously, a novel method is proposed for dual lead-crowning for helical gears with long face-widths using a CNC internal gear honing machine. The anti-twist tooth modification is carried out by controlling the swivel angle and the rotation angle of the honing wheel. In the second model, a mathematical procedure is proposed to apply the closed-loop topology modification on helical gears to achieve the double-crowned and anti-twisted tooth flanks on a CNC internal-meshing gear honing machine. Additional motions are added in the radial movement of the honing wheel, the swivel angle of honing wheel and the rotation angle of the work gear in the forms of polynomials. A sensitivity matrix is constructed and Levenberg-Marquardt (LM) algorithm is employed to obtain the polynomial coefficients of additional motions for desired tooth flank topologies. In addition, a novel manufacturing process for screw rotors is proposed using the internal-meshing CNC honing machine. During the honing process, the meshing between the screw rotor and the honing wheel is similar to that for a pair of crossed-axis internal-meshing helical gears with few teeth. This novel application has development potential to significantly reduce the machining time.
摘要 i
Abstract iii
Acknownledgments iv
Table of contents v
List of figures viii
List of tables xi
Nomenclature xii
Chapter 1 Introduction 1
1-1 Research background 1
1-2 Literature review 2
1-3 Research objective 5
1-4 Dissertation overview 7
Chapter 2 Mathematical model for an internal-meshing CNC honing machine 9
2-1 Introduction 9
2-2 Structure and coordinate system of an internal-meshing CNC honing machine 9
Chapter 3 Dual lead-crowning for helical gear with long face width 14
3-1 Introduction 14
3-2 Mathematical model for generation of honing wheel 15
3-3 Methodology of dual lead-crowning of helical gear 19
3-4 Normal deviation of the work gear tooth surface 24
3-5 Numerical examples 26
3-5-1 Modifications of tooth surface by dual lead-crowning for a helical gear 26
3-5-2 Dual lead-crowing for a helical gear with anti-twisted tooth surfaces by gear honing process 29
3-5-3 Tooth contact analysis for the dual lead-crowned tooth surface 31
3-6 Concluding remark 34
Chapter 4 Closed-loop topology modification of helical gears using internal-meshing gear honing 35
4-1 Introduction 35
4-2 Mathematical model for topology modification of cylindrical gears using gear-honing machine 37
4-3 Closed-loop topology modification method for internal-meshing gear honing 42
4-3-1 Numerical solution for machine-axis settings using Levenberg-Marquardt algorithm 42
4-3-2 Closed-loop topology modification 44
4-4 Numerical examples 48
4-4-1 Sensitivity analysis for machine-axis settings in relation to normal deviations of generated tooth surface 48
4-4-2 Comparisons between traditional and the proposed methods for closed-loop topology modification 50
4-4-3 Comparisons of tooth contact performance for traditional and the proposed methods for topology modification 55
4-4-4 Validation of flexibility of the proposed topology modification method 57
4-5 Concluding remark 59
Chapter 5 Mathematical model for screw rotor honing on internal-meshing honing machine 60
5-1 Introduction 60
5-2 Mathematical model for screw rotor honing 61
5-3 Normal errors of screw rotor surface 71
5-4 Numerical examples 72
5-4-1 Verification of mathematical model 72
5-4-2 Influence of additional movements for each machining axis on screw rotor surface 74
5-5 Concluding remark 76
Chapter 6 Conclusions and future work 77
6-1 Conclusions 77
6-2 Future work 78
Appendix 80
References 83
Publications list 89
Author profile 90
[1] J. P. Dugas, “Rotary Gear Honing,” The 16th Annual AGMA Gear Symposium, pp. 36-38, 1988.
[2] J. P. Dugas, “Gear Finishing by Shaving, Rolling and Honing - Part II,” Gear Technology, pp. 24-30, 1992.
[3] N.W. Wright and H. Schriefer, “Basic Honing and Advanced Free-Form Honing,” Gear Technology, Vol.204, pp. 26–33, 1997.
[4] N. Amini, H. Westberg, F. Klocke and T. K¨ollner, “An experimental study on the effect of power honing on gear surface topography,” Gear Technology, Vol.16, pp. 11–18, 1999.
[5] F. Klocke, Manufacturing Processes 2-Grinding, Honing, Lapping, RWTHedition, RWTH Aachen, pp. 334–337, 2009.
[6] F.L. Litvin and A. Fuentes, Gear Geometry and Applied Theory, 2nd ed., Cambridge University Press, Cambridge, UK, 2004.
[7] D.W. Dudley, Dudley’s Gear Handbook: The Design, Manufacture, and Application of Gears, 2nd ed., McGraw-Hill, New York, 2011.
[8] F.L. Litvin, P.H. Peng, S.A. Lagutin, D.P. Townsend and T.M. Sep, “Helical and spur gear drive with double crowned pinion tooth surfaces and conjugated gear tooth surfaces,” U.S. Patent No. 6205 879 B1, 2001.
[9] W.S. Wang and Z.H. Fong, “Tooth contact analysis of longitudinal cycloidal-crowned helical gears with circular arc teeth,” J. Mech. Design, Vol. 132, pp. 031008, 2010.
[10] F.L. Litvin, A. Fuentes, I.G. Peres, L. Carvenali, K. Kawasaki and R.F. Handschuh, “Modified involute helical gears: computerized design, simulation of meshing and stress analysis,” Comput. Methods Appl. Mech. Eng., Vol. 192, pp. 3619–3655, 2003.
[11] V.T. Tran, R.H. Hsu and C.B. Tsay, “A methodology for longitudinal tooth flank crowning of the helical gear on a CNC honing machine,” Adv. Meter. Research, Vol. 1091, pp. 53–62, 2015.
[12] Z.H. Fong and G.H. Chen, “Gear flank modification using a variable lead grinding worm method on a computer numerical control gear grinding machine,” J. Mech. Design, Vol. 138, pp. 083302, 2016.
[13] Y.P. Shih and S.D. Chen, “A flank correction methodology for a five-axis CNC gear profile grinding machine,” Mech. Mach. Theory, Vol. 47, pp.31–45, 2012.
[14] J. Jiang and Z.D. Fang, “High-order tooth flank correction for a helical gear on a six-axis CNC hob machine,” Mech. Mach. Theory, Vol. 91, pp.227–237, 2015.
[15] J.Y. Tang, F. Yin and X.M. Chen, “The principle of profile modified face-gear grinding based on disk wheel,” Mech. Mach. Theory, Vol.70, pp. 104–113, 2013.
[16] V.T. Tran, R.H. Hsu and C.B. Tsay, “Study on the anti-twist helical gear tooth flank with longitudinal tooth crowning,” J. Mech. Design, Vol. 136, pp. 1–10, 2014.
[17] V.T. Tran, R.H. Hsu and C.B. Tsay, “Tooth contact analysis for a double-crowned involute helical gear with twist-free tooth flanks generated by dual-lead hob cutters,” J. Mech. Design, Vol. 137, pp. 1-11, 2015.
[18] Y.R. Wu and V.T. Tran, “Lead crowning and anti-twist for tooth flank of a heat treated helical gear on internal CNC honing machine,” Appl. Mech. Materials, Vol. 799–800, pp. 554–559, 2015.
[19] Y.R. Wu and V.T. Tran, “Transmission and load analysis for a crowned helical gear pair with twist-free tooth flanks generated by an external gear honing machine,” Mech. Mach. Theory, Vol. 98, pp. 36–47, 2016.
[20] V.T. Tran, R.H. Hsu and C.B. Tsay, “A Crowned helical gear with twist-free tooth flanks generated by a CNC honing machine,” Int. J. Mech. Prod. Engineering 3, pp. 29-35, 2015.
[21] S. Chen, J. Tang and L. Wu, “Dynamics analysis of a crowned gear transmission system with impact damping: based on experimental transmission error,” Mech. Mach. Theory, Vol. 74, pp. 354-369, 2014.
[22] Y.Z. Wang, Z. Lan, L.W. Hou, X.M. Chu and Y.Y. Yin, “An efficient honing method for face gear with tooth profile modification,” Int. J. Adv. Manuf. Technol., Vol. 90, pp. 1155-1163, 2017.
[23] S.M. Francisco, L.I. Jose and R.C. Victor, “Numerical tooth contact analysis of gear transmissions through the discretization and adaptive refinement of the contact surfaces,” Mech. Mach. Theory, Vol. 101, pp. 75–94, 2016.
[24] Y.J. Peng, N. Zhao, P.Y Qiu, M.Q. Zhang, W. Li and R.C Zhou, “An efficient model of load distribution for helical gears with modification and misalignment,” Mech. Mach. Theory, Vol. 121, pp. 151–168, 2018.
[25] Y.B. Shen, X. Liu, D.Y. Li and Z.P. Li, “A method for grinding face gear of double crowned tooth geometry on a multi-axis CNC machine,” Mech. Mach. Theory, Vol. 121, pp. 460–474, 2018.
[26] J. Jiang and Z.D. Fang, “High-order tooth flank correction for a helical gear on a six-axis CNC hob machine,” Mech. Mach. Theory , Vol. 91, pp. 227–237, 2015.
[27] D.S. Jung and G.L. Lee, “Manufacture of composite screw rotors for air compressors by RTM process,” J. Mater. Process. Technol. Vol. 113, pp. 196-201, 2001.
[28] Y.R. Wu and Z.H. Fong, “Optimization design of an explicitly defined rack for the generation of rotors for twin-screw compressors,” Mech. Mach. Theory, Vol. 44, pp. 66-82, 2009.
[29] C.F. Hsieh, Y.W. Hwang and Z.H. Fong, “Study on the tooth profile for the screw claw-type pump,” Mech. Mach. Theory, Vol. 43, pp. 812-828, 2008.
[30] F.L. Litvin and P.H. Feng, “Computerized design, generation, and simulation of meshing of rotors of screw compressor,” Mech. Mach. Theory, Vol. 32, pp. 137-160, 1997.
[31] N. Stosic, I.K. Smith and A. Kovacevic, Screw Compressors: Mathematical Modelling and Performance Calculation, 1st ed., Springer, Heidelberg, Germany, 2005.
[32] Y.R. Wu and C.W. Fan, “Mathematical modeling for screw rotor form grinding on vertical multi-axis computerized numerical control form grinder,” J. Manuf. Sci. and Eng., Vol. 135, pp. 051020, 2013.
[33] J. Wei, Q. Zhang, Z.Z. Xu and S.K. Lyu, “Study on precision grinding of screw rotors using CBN wheel,” Int. J. Preci. Eng. Manuf., Vol. 11, pp. 651-658, 2010.
[34] N. Stosic, “A geometric approach to calculating tool wear in screw rotor machining,” Int. J. Machi. Tool. Manuf., Vol. 46, pp. 1961-1965, 2006.
[35] S.Y. Park, H.K. Lee, G.E. Yang and S.D. Moon, “A study on the machining of compressor rotors using formed tools,” Int. J. Preci. Eng. Manuf., Vol. 11, pp. 195-200, 2010.
[36] Y.R Wu and W.H. Hsu, “A general mathematical model for continuous generating machining of screw rotors with worm-shaped tools,” Appl. Math. Mode., Vol. 38, pp. 28-37, 2014.
[37] A. Kovacevic, S. Rane and N. Stosic, “Grid generation for screw compressors with variable geometry rotors,” Int. J. Aero. Light. Struct., Vol. 3, 2013.
[38] A. Kovacevic, S. Rane and N. Stosic, Screw compressor with variable geometry rotors - analysis of designs by CFD, in: IMechE (Eds.), 12th European Fluid Machinery Congress, Woodhead Publishing, Cambridge, pp. 91-102, 2014.
[39] S. Rane, A. Kovacevic, N. Stosic and M. Kethidi, “Deforming grid generation and CFD analysis of variable geometry screw compressors,” Comput. Fluids, Vol. 99, pp. 124-141, 2014.
[40] M. Utri, A. Brümmer and J. Hauser, “Comparison of thermodynamic efficiency between constant, dual and multiple lead rotors for an industrial air screw compressor,” IOP Conf. Ser.: Mater. Sci. Eng., Vol. 425, pp. 012025, 2018.
[41] J. Wang, F. Cui, S.H Wei, R.D. Sha and H.J. Liu, “Study on a novel screw rotor with variable cross-section profiles for twin-screw vacuum pumps,” Vacuum, Vol. 145, pp. 299-307, 2017.
[42] V.T. Tran, “A methodology for generating a variable-pitch rotor of twin-screw vacuum pump,” Appl. Mech. Mater., Vol. 889, pp. 475-483, 2019.
[43] D.T. Mehta and M.G. Rathi, “A Review an Internal Gear Honing,” Int. J. Eng. Research & Technology 2, Vol. 5, pp. 973-983, 2013.
[44] KISSsoft, Introduces New Features with Latest Release, Gear Technol., pp. 13–18, 2010.
[45] KISSsoft, Release 03/2015A-User Manual, CH-8608 Bubikon Schweiz, 2015.
[46] J. Han, Y.G. Zhu, L. Xia and X.Q. Tian, “A novel gear flank modification methodology on internal gearing power honing gear machine,” Mech. Mach. Theory, Vol. 121, pp. 669–682, 2018.
[47] Y.R. Wu and V.T. Tran, “Lead crowning and anti-twist for tooth flank of a heat treated helical gear on internal CNC honing machine,” Applied Mechanics and Materials, Vol. 799, pp. 554-559, 2015.
[48] E.K. Guo, R.J. Hong, X.D. Huang and C.G. Fang, “Power skiving process for cylindrical gears manufacturing,” Applied Mechanics and Materials, Vol. 799, pp. 382-387, 2015.
[49] S.M. Burney, T.A. Jilani and C. Ardil, “Levenberg-Marquardt algorithm for Karachi Stock Exchange share rates forecasting,” International Journal of Computational Intelligence, Vol. 1, pp. 144-9, 2005.
[50] M.I. Lourakis, “A brief description of the Levenberg-Marquardt algorithm implemented by levmar,” Foundation of Research and Technology. Vol. 4, pp. 1-6, 2005.
[51] https://www.eaton.com/Eaton/ProductsServices/Vehicle/Differentials/detroit-truetrac/
[52] Y.R. Wu and Z.H. Fong, “Rotor profile design for the twin-screw compressor based on the normal-rack generation method,” J. Mech. Design, Vol. 130(4), pp. 042601, 2008.
電子全文 電子全文(網際網路公開日期:20220724)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔