(3.235.236.13) 您好!臺灣時間:2021/05/15 03:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉岳群
研究生(外文):Yueh-Chun Liu
論文名稱:離岸風力機塔架在正常發電下之疲勞分析
論文名稱(外文):nono
指導教授:黃俊仁黃俊仁引用關係
指導教授(外文):Jiun-Ren Hwang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:122
中文關鍵詞:離岸風力機塔架疲勞GH-Bladed
外文關鍵詞:Offshore wind turbineTowerFatigueGH-Bladed
相關次數:
  • 被引用被引用:0
  • 點閱點閱:44
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以NREL 5MW OWT風力機塔架為對象,選擇規範IEC 61400-3之DLC 1.2疲勞工況,進行離岸風力機在正常發電時之塔架疲勞分析。風況及海況模擬參數,為採用新竹沿海之資料,並整合GH-Bladed、ANSYS、MATLAB及FAMOS等軟體進行疲勞分析。葉片與塔架模型的準確性以自然頻率分析值與實驗值之比較來驗證。材料疲勞性質的應力-壽命(S-N)線選用Eurocode 3之71 category。疲勞分析方法包括雨流循環計數、Goodman平均應力修正及Miner疲勞損傷累積法則。
研究結果顯示塔架除了塔底管壁內側有較大von-Mises應力外,亦在23 m高度管壁外側出現較大應力。在應力歷程計算方面,可採用單位負載法取代ANSYS動態應力分析,以大幅降低分析時間。在切入風速至切出風速之間,風速愈高,則塔架的疲勞損傷愈大,且大致成線性關係。在海洋參數中,示性波高愈大,塔架疲勞損傷愈大。尖峰週期提高時,塔架底部疲勞損傷會降低。水位的上升,會提高塔架的疲勞損傷值。風浪方向為 -45°時,會比0°時造成較大的塔架損傷。在20年正常發電下各風浪方向觀測位置之疲勞損傷值皆小於1,塔架在此期間不會產生疲勞失效。
In this study, the fatigue damage of NREL 5MW OWT wind turbine tower was analyzed under the normal power production based on the DLC 1.2 in IEC 61400-3. Wind and sea conditions were based on the information obtained from the coast of Hsinchu. Software programs including GH-Bladed, ANSYS, MATLAB and FAMOS were integrated. The accuracy of the model was verified by comparing the results of natural frequency analysis with the experimental data. The S-N curve of 71 category in Eurocode 3 was adopted in the fatigue analysis. Fatigue analysis methods included rainflow cycle counting, Goodman mean stress correction, and Miner’s fatigue damage accumulation rule.
The results show that the inner wall of the tower bottom had a maximum von Mises stress and the outer wall at a height of 23 m also had high stress. In the aspect of stress history calculation, unit load method can replace ANSYS dynamic stress analysis to greatly reduce the analysis time. The higher the wind speed is, the greater the fatigue damage of the tower is, and the relationship is roughly linear. The higher the indicative significant wave height is, the greater the fatigue damage of the tower is. When the peak period is increased, the fatigue damage at the bottom of the tower will be reduced. The rise of sea level will increase the fatigue damage value of the tower. When the wind wave direction is -45°, the tower damage will be greater than that at 0°. Under 20 years of normal power generation, the fatigue damage of the tower is less than 1, and fatigue failure of the tower will not occur during this period.
摘要 i
Abstract ii
目錄 iv
圖目錄 viii
表目錄 xii
符號說明 xiii
第一章、緒論 1
1-1 研究背景與動機 1
1-2研究目的 5
1-3離岸風力機簡介 6
1-3-1風力機原理 6
1-3-2離岸風力機機組構造 7
1-4文獻回顧 9
1-4-1離岸風力機之設計規定 9
1-4-2應力之分析 9
1-4-3風力機疲勞壽命評估 11
第二章、理論說明 13
2-1軟體說明 13
2-1-1 GH-Bladed 13
2-1-2 MATLAB 13
2-1-3 imc FAMOS 14
2-2風力機外部條件 15
2-2-1風況條件 16
2-2-1-1風速分布 16
2-2-1-2 十分鐘平均風速 17
2-2-1-3風切係數 17
2-2-1-4紊流強度 18
2-2-2海況條件 19
2-2-2-1波浪 19
2-2-2-2潮汐水位 21
2-3單位負載法 23
2-4疲勞分析 23
2-4-1應力-壽命曲線(S-N Curve) 24
2-4-2常用熔融銲接結構疲勞設計規範 25
2-4-3 平均應力的影響及修正 26
2-4-4循環計數 29
2-4-5疲勞損傷累積 31
第三章、研究方法 32
3-1離岸風力機型號與規格 33
3-2建構NREL 5MW OWT模型 37
3-2-1 GH-Bladed建構NREL 5MW OWT模型 37
3-2-2 ANSYS建構NREL 5MW OWT塔架模型 40
3-2-2-1 NREL 5MW OWT塔架模型設定 40
3-2-2-3 NREL 5MW OWT塔架法蘭模型 41
3-2-2-3 ANSYS網格設定 43
3-3模態分析 45
3-3-1 GH-Bladed模態分析 45
3-3-2 ANSYS Workbench模態分析 45
3-4 NREL 5MW OWT設計工況 46
3-5 GH-Bladed塔架負載轉換 54
3-6 GH-Bladed模擬資料取樣頻率 57
第四章、結果與討論 59
4-1 NREL 5MW OWT葉片及塔架模態分析 59
4-2疲勞分析位置之選定 61
4-2-1確認塔架分析之截面高度 63
4-2-2確認各截面方位角 65
4-3單位負載法 69
4-4疲勞損傷評估 72
4-4-1材料性質 72
4-4-2循環計數及應力馬可夫矩陣 74
4-4-3平均應力修正 74
4-4-4疲勞損傷分析 76
4-5塔架疲勞損傷分析 77
4-5-1風速對疲勞損傷之影響 77
4-5-2海洋參數對疲勞損傷之影響 78
4-5-2-1示性波高之影響 78
4-5-2-2尖峰週期之影響 83
4-5-3正常發電20年之疲勞損傷 87
4-5-3-1水位之影響 87
4-5-3-2風浪方向之影響 88
4-5-4風與浪之亂數種子之影響 93
第五章、結論與未來研究方向 96
5-1結論 96
5-2未來研究方向 97
參考文獻 98
[1] "Energy statisics handbook" ,經濟部能源局,2018。
[2] "風力發電4年推動計畫" ,經濟部能源局,2017.
[3] "Global Wind Speed Rankings," 4C Offshore, 2013.
[4] 網路資料:風力發電單一服務窗口,取自https://www.twtpo.org.tw/。
[5] 呂學德、何無忌、呂威賢、胡哲魁、陳美蘭、連永順, "台灣離岸風力潛能與優選離岸區塊場址研究," 中華民國第三十六屆電力工程研討會, 2015。
[6] 楊子霆,"大型風力機塔架延壽評估",國立中央大學碩士論文,2018。
[7] 網路資料:維基百科。取自https://zh.wikipedia.org/wiki/%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB%E5%BB%A0。
[8] 網路資料:Wind Energy Gets Serial,取自https://www.theengineer.co.uk/wind-energy-gets-serial/。
[9] "Wind Turbines - Part 1: Design Requirements, " IEC 61400-1, International Electrotechnical Commission, 2014.
[10] 陳偉梁, 沈鳳亞, 餘國城, "大型風力機偏航迴轉支承連接螺栓應力分析", 水電能源科學, Vol. 32, No. 7, pp. 198-201, 2014。
[11] 春艷、金鑫、何玉林、王磊、劉樺,"風力發電機在地震-風力作用下的載荷計算",中國機械工程學術研討會, Vol. 22, No. 18, pp. 2236-2240, 2011。
[12] 謝昆儒、曾瑞堂、張永源,"風力機之塔架負載分析",G6-02,pp514-517,臺灣風能學術研討會,2010。
[13] 蔡育哲,"離岸風機支撐結構行為受風浪載重之研究",國立成功大學碩士論文,2016。
[14] 洪浚傑,"離岸風力機負載分析與結構應力分析",國立中央大學碩士論文,2019。
[15] S. Evren, M. Unel, O. K. Adak, K. Erbatur, and M. F. Aksit, "Modeling and simulation of a horizontal axis Wind Turbine using S4WT," International Conference on Renewable Energy Research and Applications (ICRERA), 2012.
[16] Y. Hu, "Improvement of the structural response of steel tubular wind turbine towers by means of stiffeners," University of Birmingham, 2015.
[17] M. Alonso-Martinez, J. M. Adam, F. P. Alvarez-Rabanal, and J. J. del Coz Díaz, "Wind turbine tower collapse due to flange failure: FEM and DOE analyses," Engineering Failure Analysis, vol. 104, pp. 932-949, 2019.
[18] R. Kamieth and R. Liebich, "Backward Extrapolation of Short Time Measurement Data for a Remaining Service Life Estimation of Wind Turbines," DEWEK Wind Energy Conference, 2012.
[19] N. Stavridou, E. Efthymiou, and C. C. Baniotopoulos, "Welded connections of wind turbine towers under fatigue loading: Finite element analysis and comparative study," American Journal of Engineering and Applied Sciences, Vol. 8, No. 4, p. 489, 2015.
[20] P. Passon, "Damage equivalent wind–wave correlations on basis of damage contour lines for the fatigue design of offshore wind turbines," Renewable Energy, vol. 81, pp. 723-736, 2015.
[21] W. Dong, T. Moan, and Z. Gao, "Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain," Engineering Structures, Vol. 33, No. 6, pp. 2002-2014, 2011.
[22] A. Glisic, G. T. Ferraz, and P. Schaumann, "Influence of wave load variations on offshore wind turbine structures," 2017.
[23] G. McCann, "Tidal current turbine fatigue loading sensitivity to waves and turbulence–a parametric study," Proceedings of the 7th European Wave and Tidal Energy Conference, 2007.
[24] DNV GL, and Garrad Hassan and Partners Ltd, "Bladed User Manual Version 4.8, " 2016.
[25] "Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines," IEC 61400-3, International Electrotechnical Commission, 2009.
[26] Y.K. Chen, and J.L. Chen, "Changhua Coastal Wind Farm Assessment by IEC61400," Taiwan Power Research Institute, 2015.
[27] M. B. Fuchs, "The Unit-Load Method," Structures and Their Analysis: Springer, pp. 85-110, 2016.
[28] "Eurocode 3: Design of steel structures-Part 1-9: Fatigue," European Committee for Standardization: Brussels, Belgium, 2005.
[29] J. Bannantine, J. Comer, and J. Handrock, "Fundamentals of metal fatigue analysis ," Research supported by the University of Illinois. Englewood Cliffs, NJ, Prentice Hall, 1990, 286, 1990.

[30] 黃嘉彥,"工程結構之疲勞與破壞",徐氏基金會,1998。
[31] M. Matsuishi and T. Endo, "Fatigue of metals subjected to varying stress," Japan Society of Mechanical Engineers, Fukuoka, Japan, Vol. 68, No. 2, pp. 37-40, 1968.
[32] "Standard practices for cycle counting in fatigue analysis," ASTM International, 2005.
[33] A. Palmgren, "Durability of ball bearings," ZVDI, Vol. 68, No. 14, pp. 339-341, 1924.
[34] M. Miner, "Cumulative damage in fatigue," Journal of Appl. Mech., Vol. 12, pp. A159-A164, 1945.
[35] 崔海平,"離岸風電場址風況、海洋參數及負載分析技術研究",金屬工業研究發展中心研究報告,2018。
[36] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, "Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory, Golden," CO, Technical Report No. NREL/TP-500-38060, 2009.
[37] J. Jonkman and W. Musial, "Offshore code comparison collaboration (OC3) for IEA Wind Task 23 offshore wind technology and deployment," National Renewable Energy Lab.(NREL), Golden, CO (United States), 2010.
[38] U. Fernandez-Gamiz, E. Zulueta, A. Boyano, J. A. Ramos-Hernanz, and J. M. Lopez-Guede, "Microtab design and implementation on a 5 MW wind turbine", Applied Sciences, Vol. 7, No. 6, p. 536, 2017.
[39] 施忠賢,"彰工II塔架結構計算書,施忠賢結構計師事務所",2010。
[40] 網路資料:元智大學最佳化設計實驗室,取自http://designer.mech.yzu.edu.tw/article/articles/course/file/(2004-03-26)%20%B2%C4%A4E%B3%B9%A1@%A6%B3%AD%AD%A4%B8%AF%C0%A4%C0%AAR.pdf。
[41] 張景鐘,"台灣地區風速頻譜之探討",中華民國風工程學會電子期刊,p.54-80,2013。
[42] 劉瑞弘,"風力機結構負載與共振模態之分析",工業技術研究院,2009。
[43] DNV GL, "DNVGL-RP-C203: Fatigue Design of Offshore Steel Structures," 2
[44] 網路資料: S355ML Steel Grade, Mechanical Properties, Chemical Composition, Grade Equivalent,取自http://www.b2bmetal.eu/en/pages/index/index/id/209/。
[45] 網路資料: S355NL Structural Steel Plates Specifications,取自https://www.victorsteel.net/en-10025-3-s355-nl-steel-plate.html。
[46] N. Veritas, "Guidelines for design of wind turbines," Det Norske Veritas: Wind Energy Department, Ris ̜National Laboratory, 2002.
[47] DNV GL, "Loads and site conditions for wind turbines," 2016.
電子全文 電子全文(網際網路公開日期:20220731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top