(35.175.212.130) 您好!臺灣時間:2021/05/15 10:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:琪琪
研究生(外文):Rizky Kusumastuti
論文名稱:應用銅基觸媒逆流管式填充床反應器之甲醇水蒸氣重組分析
論文名稱(外文):Analysis of counter-flow tubular packed bed reactor with Cu-based catalysts for methanol steam reforming
指導教授:曾重仁
指導教授(外文):Prof. Chung Jen TsengDr. Eng Widya Wijayanti
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:196
中文關鍵詞:甲醇蒸汽重組Cu / ZnO / Al2O3CuO / ZnO / Al2O3逆水煤氣轉化水煤 氣轉化COMSOL
外文關鍵詞:Methanol Steam ReformingCu / ZnO / Al2O3CuO / ZnO / Al2O3Reverse Water Gas ShiftingWater Gas ShiftingCOMSOL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究運用管式填充床反應器設計了甲醇水蒸氣重組(MSR)燃料電池,並採用
不同的工業觸媒Cu/ZnO/Al2O3 和CuO/ZnO/Al2O3,每種觸媒都有不同的反應速率公
式,本研究已使用實驗數據將其進行驗證。在模擬中,於Cu/ZnO/Al2O3 觸媒中採用
水蒸氣重組(SR)和逆水煤氣轉化(RWGS)反應,在CuO/ZnO/Al2O3 的模擬中,則
採用了水蒸氣重組(SR)、分解和水煤氣轉化(WGS)反應。
這些計算是由COMSOL 多重物理量耦合分析軟體進行的。分析了重組器入口溫
度、加熱管入口溫度、水碳比和入口空氣流速等參數。同時計算了溫度分佈、甲醇、
一氧化碳、二氧化碳、氫氣和水蒸氣的摩爾分率。最後從甲醇轉化率、CO 選擇性和
各氣體的摩爾分率等方面比較了不同觸媒的MSR 性能。
結果表明,對於Cu/ZnO/Al2O3 之觸媒,入口溫度為300℃時,重組器的甲醇轉化
率高達100%。然而,入口溫度的升高也使CO 含量增加,直至達到0.14%。另外,
由於逆水煤氣轉化反應(RWGS)將CO2 轉化為CO,降低了CO2 的摩爾分率。在同
一參數下,採用CuO/ZnO/Al2O3 的反應器,在入口溫度為180℃-200℃時,甲醇轉化
率達到100%,因使用了三種反應,故CO 之摩爾分率僅為0.05%。影響MSR 性能的
第二個參數是加熱管之入口風速,其在使用Cu/ZnO/Al2O3 的重組裝置中,進氣速率
由1m/s 增加到6m/s,可以使甲醇轉化率從10%提高到25%。其在另一種觸媒的效果
則較好,甲醇轉化率可達到80%,轉化率的提高與加熱管內之熱空氣的質量對流密切
相關,導致更多的熱量可以沿著重組器分佈。這也使得加熱管入口溫度的影響不太顯
著。當加熱管入風速率固定為0.1m/s 時,熱能傳遞不能為重組過程提供足夠的熱量。
將水碳比由0.7 增加至1.45,可以减少燃料稀釋產生的氫氣。
關鍵字:甲醇蒸汽重組、Cu / ZnO / Al2O3、CuO / ZnO / Al2O3、逆水煤氣轉化、水煤
氣轉化、COMSOL
ABSTRACT
Methanol Steam Reforming (MSR) with tubular packed bed reactor design was
developed for fuel cell using the different commercial catalyst Cu/ZnO/Al2O3 and
CuO/ZnO/Al2O3. Each catalyst has a different kinetic rate formula that has been validated
using experimental data. In simulation, using Cu/ZnO/Al2O3 catalyst uses Steam Reforming
(SR) and Reverse Water Gas Shifting (RWGS) reactions. Meanwhile, in simulation using
CuO/ZnO/Al2O3 uses Steam Reforming (SR), Decomposition and Water Gas Shifting (WGS)
reactions.
The calculation is carried out by a multiphysics program called COMSOL. Some of the
parameters are varied to be analyzed such as reformer inlet temperature, heating tubes inlet
temperature, steam to carbon and air heating tubes inlet velocity. Temperature distribution,
methanol (CH3OH), carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2) and steam
(H2O) mole fraction were calculated simultaneously. Finally, the performances of the MSR
using different catalyst are compared in terms of methanol conversion, CO selectivity and
mole fraction of each gases.
The results showed that the effect of reformer inlet temperature presenting high
methanol conversion until reach 100% at temperature inlet 300 ℃ for Cu/ZnO/Al2O3
catalyst. However, the increase of reformer inlet temperature also enhance of CO until
reaching 0.14%. Otherwise, it decreases CO2 mole fraction due to reverse water gas shift
reaction (RWGS) which convert CO2 to CO. Different results in the same parameter showed
for a reactor that using CuO/ZnO/Al2O3 which has achieved 100% methanol conversion at
reformer inlet temperature around 180 ℃ − 200℃ with CO mole fraction only 0.05%
because of the use of three reactions. The second parameter affects on the performance of
MSR is air heating tubes inlet velocity. The increasing air velocity inlet from 1 m/s to 6 m/s
can enhance the methanol conversion from 10% to 25 % in reformer using Cu/ZnO/Al2O3.
While, better results are obtained in another catalyst which is reached until 80% methanol
conversion. These increasing closely related to mass convection of hot air in heating tubes
that caused more heat could be distributed along reformer. This also causes effect of heating
tubes inlet temperature to be not too significant. With fixed parameter for air heating tubes
inlet velocity 0.1 m/s, the heat energy transfer cannot provide the enough heat for reforming
process. The increasing of steam to carbon from 0.7 to 1.45 can decrease the hydrogen
production due to the fuel dilution.
Keywords : Methanol Steam Reforming, Cu/ZnO/Al2O3, CuO/ZnO/Al2O3, Reverse Water
Gas Shifting, Water Gas Shifting, COMSOL
TABLE OF CONTENTS
中文摘要 I
ABSTRACT II
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF FIGURES VII
LIST OF TABLES X
LIST OF SYMBOLS XI
CHAPTER 1 1
1.1 Background 1
1.2 Literature review 3
1.3 Motivation 5
CHAPTER 2 7
2.1 Model 7
2.1.1 Methanol steam reforming 7
2.1.2 Methanol fuel 8
2.1.3 Steam to carbon 9
2.1.4 Darcy law 10
2.1.5 Mass convection 11
2.1.5.1 Reynold number 11
2.1.5.2 Nusselt number 13
2.1.6 Laminar flow in cylinder tubes 14
2.1.7 Catalyst 14
2.1.7.1 Catalyst Deactivation 15
2.1.8 Reaction rate 16
2.1.7.1 Reaction rate based Cu/ZnO/Al2O3 16
2.1.7.2 Reaction rate based CuO/ZnO/Al2O3 17
2.2 Methodology 18
2.2.1 System design 18
2.2.1.1 Physical model 18
2.2.1.2 Number of elements 19
2.2.2 Boundary conditions 20
2.2.3 Governing equations 21
2.2.2.1 Fluid flow in reformer bed 21
2.2.2.2 Energy transport in reformer bed 22
2.2.2.3 Mass transport in reformer bed 23
2.2.2.4 Fluid flow in heating tubes 23
2.2.2.5 Energy transport in Heating Tubes 23
2.2.2.6 Insulating Jacket 24
2.3 Procedure 24
2.3.1 Data collection methodology 25
2.3.1.1 Calculation of surface area in reformer 26
2.3.1.2 Determining average temperature in reformer 28
2.3.2 Flow Chart 30
2.3.3 Validation 31
2.2.3.1 Validation of MSR based on Cu/ZnO/Al2O3 catalyst 31
2.2.3.2 Validation of MSR based on CuO/ZnO/Al2O3 catalyst 32
CHAPTER 3 34
3.1 Grid independence verification 34
3.2 Effect of operating parameter on Cu/ZnO/Al2O3 catalyst 34
3.1.1 Effect of reformer inlet temperature 35
3.1.2 Effect of heating tubes inlet temperature 41
3.1.3 Effect of steam to carbon 46
3.1.4 Effect of air velocity heating tubes 49
3.2 Effect of operating parameter on CuO/ZnO/Al2O3 55
3.2.1 Effect of reformer inlet temperature 55
3.2.2 Effect of heating tubes inlet temperature 60
3.2.3 Effect of steam to carbon 63
3.2.4 Effect of air velocity heating tubes 66
CHAPTER 4 71
1.1 Conclusions 71
4.2 Suggestions 72
REFERENCES 73
APPENDICES A – COMSOL Multiphysics settings 76
APPENDICES B – Tables of results 101
APPENDICES C- Figures of results 154
REFERENCES
[1] B. G. Pollet, A. A. Franco, H. Su, H. Liang, and S. Pasupathi, Proton exchange membrane fuel cells. 2016.
[2] A. Iulianelli, P. Ribeirinha, A. Mendes, and A. Basile, “Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review,” Renew. Sustain. Energy Rev., vol. 29, pp. 355–368, 2014.
[3] A. A. AlZahrani and I. Dincer, “Design and analysis of a solar tower based integrated system using high temperature electrolyzer for hydrogen production,” Int. J. Hydrogen Energy, vol. 41, no. 19, pp. 8042–8056, 2016.
[4] G. G. Park, D. J. Seo, S. H. Park, Y. G. Yoon, C. S. Kim, and W. L. Yoon, “Development of microchannel methanol steam reformer,” Chem. Eng. J., vol. 101, no. 1–3, pp. 87–92, 2004.
[5] S. W. Perng, R. F. Horng, and H. W. Ku, “Effects of reaction chamber geometry on the performance and heat/mass transport phenomenon for a cylindrical methanol steam reformer,” Appl. Energy, vol. 103, pp. 317–327, 2013.
[6] Z. Zeng, G. Liu, J. Geng, D. Jing, X. Hong, and L. Guo, “A high-performance PdZn alloy catalyst obtained from metal-organic framework for methanol steam reforming hydrogen production,” Int. J. Hydrogen Energy, vol. 44, no. 45, pp. 24387–24397, 2019.
[7] A. F. Ghenciu, “Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems,” Curr. Opin. Solid State Mater. Sci., vol. 6, no. 5, pp. 389–399, 2002.
[8] C. N. Satterfield, “Acid and Zeolite Catalysts,” Heterogeneous Catalysis in industrial practice. pp. 209–266, 1991.
[9] P. Nehe, V. M. Reddy, and S. Kumar, “Investigations on a new internally-heated tubular packed-bed methanol-steam reformer,” Int. J. Hydrogen Energy, vol. 40, no. 16, pp. 5715–5725, 2015.
[10] J. Zhu, S. S. Araya, X. Cui, S. L. Sahlin, and S. K. Kær, “Modeling and design of a multi-tubular packed-bed reactor for methanol steam reforming over a Cu/ZnO/Al2O3 catalyst,” Energies, vol. 13, no. 3, pp. 1–26, 2020.
[11] F. Gallucci and A. Basile, “Co-current and counter-current modes for methanol steam reforming membrane reactor,” Int. J. Hydrogen Energy, vol. 31, no. 15, pp. 2243–2249, 2006.
[12] C. Y. Hsueh, H. Sen Chu, W. M. Yan, and C. H. Chen, “Numerical study of heat and mass transfer in a plate methanol steam micro reformer with methanol catalytic combustor,” Renew. Energy, vol. 35, no. 12, pp. 6227–6238, 2010.
[13] R. Overtoom, N. Fabricius, and W. Leenhouts, Shell GTL, from Bench scale to World scale, First Edit. Elsevier B.V., 2009.
[14] R. Chein, Y. C. Chen, and J. N. Chung, “Axial heat conduction and heat supply effects on methanol-steam reforming performance in micro-scale reformers,” Int. J. Heat Mass Transf., vol. 55, no. 11–12, pp. 3029–3042, 2012.
[15] L. Yao, F. Wang, L. Wang, and G. Wang, “Transport enhancement study on small-scale methanol steam reforming reactor with waste heat recovery for hydrogen production,” Energy, vol. 175, pp. 986–997, 2019.
[16] J. P. Breen, F. C. Meunier, and J. R. H. Ross, “Mechanistic aspects of the steam reforming of methanol over a CuO/ZnO/ZrO2/Al2O3 catalyst,” Chem. Commun., no. 22, pp. 2247–2248, 1999.
[17] J. K. Lee, J. B. Ko, and D. H. Kim, “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: Kinetics and effectiveness factor,” Appl. Catal. A Gen., vol. 278, no. 1, pp. 25–35, 2004.
[18] J. Agrell, H. Birgersson, and M. Boutonnet, “Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: A kinetic analysis and strategies for suppression of CO formation,” J. Power Sources, vol. 106, no. 1–2, pp. 249–257, 2002.
[19] H. Purnama, T. Ressler, R. E. Jentoft, H. Soerijanto, R. Schlögl, and R. Schomäcker, “CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst,” Appl. Catal. A Gen., vol. 259, no. 1, pp. 83–94, 2004.
[20] S. Zhang, Y. Zhang, J. Chen, X. Zhang, and X. Liu, “High yields of hydrogen production from methanol steam reforming with a cross-U type reactor,” PLoS One, vol. 12, no. 11, pp. 1–14, 2017.
[21] A. V. Pattekar and M. V. Kothare, “A microreactor for hydrogen production in micro fuel cell applications,” J. Microelectromechanical Syst., vol. 13, no. 1, pp. 7–18, 2004.
[22] R. P. O ’hayre and W. G. Colella, Fuel Cell Fundamentals Suk-Won Cha. .
[23] K. Zhao et al., “Reverse water gas shift reaction over CuFe/Al2O3 catalyst in solid oxide electrolysis cell,” Chem. Eng. J., vol. 336, pp. 20–27, 2018.
[24] D. Li, X. Li, and J. Gong, “Catalytic Reforming of Oxygenates: State of the Art and Future Prospects,” Chem. Rev., vol. 116, no. 19, pp. 11529–11653, 2016.
[25] M. A. Fahim, T. A. Alsahhaf, and A. Elkilani, “Chapter eleven: Hydrogen production,” Fundam. Pet. Refin., pp. 285–302, 2010.
[26] S. Vaccaro and L. Malangone, “Catalytic Combustion for Supplying Energy for Endothermic Reaction,” J. Adv. Chem. Eng., vol. 4, no. 2, 2016.
[27] A. Bejan, Convection in Porous Media. 2006.
[28] COMSOL, “Microfluidics Module,” 2018.
[29] J. Bear, “Dynamics of fluids in porous media,” Eisevier, New York, pp. 1–783, 1972.
[30] Y. A. C. & Y. Cengel, “Heat Transfer: A Practical Approach With EES CD,” p. 896, 2002.
[31] P. M. Gerhart, Munson’s fluid mechanics / Philip M. Gerhart, Andrew L. Gerhart, John I. Hochstein. 2017.
[32] M. K. Souhaimi and T. Matsuura, “Membrane Distillation,” Membr. Distill., no. MD, pp. 483–496, 2011.
[33] J. A. Dumesic, G. W. Huber, and M. Boudart, “Introduction 1.1,” pp. 1–15.
[34] J. C. Védrine, “Heterogeneous catalysis on metal oxides,” Catalysts, vol. 7, no. 11, 2017.
[35] C. Ratnasamy and J. Wagner, “Water-gas shift catalysis,” Catal. Rev. - Sci. Eng., vol. 51, no. 3, pp. 325–440, 2009.
[36] H. W. Wu, G. J. Shih, and Y. Bin Chen, “Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement,” Appl. Energy, vol. 220, no. October 2017, pp. 47–58, 2018.
[37] F. Prodi and F. Tampieri, “The removal of particulate matter from the atmosphere: the physical mechanisms,” Pure Appl. Geophys. PAGEOPH, vol. 120, no. 2, pp. 286–325, 1982.
[38] M. MacDonald, H. Stöver, and D. Kane, “Editorial,” Int. J. Prison. Health, vol. 2, no. 2, pp. 69–70, 2006.
[39] L. Pan and S. Wang, “Modeling of a compact plate-fin reformer for methanol steam reforming in fuel cell systems,” Chem. Eng. J., vol. 108, no. 1–2, pp. 51–58, 2005.
[40] J. C. Amphlett, K. A. M. Creber, J. M. Davis, R. F. Mann, B. A. People, and D. M. Stokes, “Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells,” Int. J. Hydrogen Energy, vol. 19, no. 2, pp. 131–137, 1994.
[41] M. Tsang Lee, R. Greif, C. P. Grigoropoulos, H. G. Park, and F. K. Hsu, “Transport in packed-bed and wall-coated steam-methanol reformers,” J. Power Sources, vol. 166, no. 1, pp. 194–201, 2007.
[42] Comsol4.0a and Comsol, “Chemical Reaction Engineering Module,” Interfaces (Providence)., pp. 1–220, 2010.
[43] A. Vaisi, M. Esmaeilpour, and H. Taherian, “Experimental investigation of geometry effects on the performance of a compact louvered heat exchanger,” Appl. Therm. Eng., vol. 31, no. 16, pp. 3337–3346, 2011.
[44] Y. Liu et al., “Methanol decomposition to synthesis gas at low temperature over palladium supported on ceria-zirconia solid solutions,” Appl. Catal. A Gen., vol. 210, no. 1–2, pp. 301–314, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文