(18.206.238.77) 您好!臺灣時間:2021/05/12 00:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳德宏
研究生(外文):De-Hong Wu
論文名稱:3D列印導電材料之屏蔽電磁干擾效果分析
論文名稱(外文):The Study of 3D Print Graphene/Polylactic Acid Conductive Polymer on Electromagnetic Interference Shielding Effectiveness
指導教授:廖昭仰
指導教授(外文):Chao-Yaug Liao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系在職專班
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:69
中文關鍵詞:石墨烯積層製造熔融沉積成型田口方法電磁波屏蔽
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於工業技術的進步及日常生活水準的提高,使得一些電子、電機、資訊及通訊等電器設備急劇增加,這些電器設備所產生的高密度電磁波已形成一個新的公害問題,包括電器線路本身散發電磁輻射以及其接收外界傳來的電磁輻射。電磁波干擾所形成的問題,隨著電器產品的朝向小體積、高功能、低功率與低電位發展而更趨嚴重。一般傳統電磁波干擾防護措施,大多採用銀、銅等高導電電磁屏蔽材料,但已無法因應輕、薄且客製化設計的需求,藉由積層製造技術的引入,使得生產變得有客製化及製作複雜外型輪廓、輕質等特性,具有相當大的發展潛力。本文結合積層製造技術(Additive Manufacturing, AM)與石墨烯聚乳酸材料進行田口方法分析,得到電磁防護材料的拉伸強度及電磁波屏蔽效果。
綜合上述,本研究是利用熔融沉積成型技術(Fused Deposition Modeling, FDM)列印不同導電聚乳酸(Polylactic acid )線材,內容分為二部分:第一部分是以石墨烯聚乳酸為3D列印材料,藉由列印設備能控制的範圍內獲得最佳拉伸強度。本實驗製程參數為噴頭溫度、噴頭移動速度、層厚大小,以田口式實驗設計,採L4直交表進行實驗,並且利用變異數分析(Analysis of variance, ANOVA)尋找影響結果較顯著的控制因子。經由實驗結果,在機械強度方面由品質特性反應表的S/N反應圖顯示出,最佳之組合為噴嘴速度40mm/s、噴嘴溫度240°C、層厚大小0.15mm,該參數獲得拉伸強度31.88 MPa為最佳値。經由變異數分析找出顯著控制因子,顯著控制因子影響強度的貢獻度最大,參數包含噴嘴溫度、層厚大小。比對品質特性反應表最佳化分析與ANOVA所得參數最佳化組合的結果相同,如此可確保實驗準確性。第二部分為電磁波屏蔽效果探討,量測鋁片、聚乳酸及含有石墨烯、銅的聚乳酸做屏蔽電磁效果比較,在儀器頻率範圍30Hz~300Hz下量測變壓器得知,以聚乳酸為基底摻雜不同材料且在相同距離情況下,屏蔽效果為石墨烯>銅>純聚乳酸,隨著鋁片厚度增加,屏蔽效果增加。最後,提出可能改進的建議及未來的應用。
Due to the advancement of industrial technology and the improvement of the level of daily life, some electrical equipment such as electronics, motors, information and communications have increased dramatically. The high-density electromagnetic waves generated by these electrical equipment have formed a new pollution problem, including the electromagnetic radiation of electrical circuits themselves. Radiation and its reception of electromagnetic radiation from the outside world. The problems caused by these electromagnetic interferences become more and more serious as the electrical products develop towards small size, high function, low power and low potential. The general traditional electromagnetic wave interference protection measures mostly use silver, copper and other highly conductive electromagnetic shielding materials, but they have been unable to respond to the needs of light, thin and customized designs. With the introduction of laminated manufacturing technology, production has become customized And the characteristics of making complex outlines and light weight have considerable development potential. In this paper, the additive manufacturing technology (Additive Manufacturing, AM) and graphene polylactic acid material are used to analyze the Taguchi method, and the strength of the electromagnetic protection material and the electromagnetic wave shielding effect are obtained.
To sum up the above, this study used Fused Deposition Modeling (FDM) to print different conductive polylactic acid (Polylactic acid) wires. The content is divided into two parts: The first part is PLA (Conductive Graphene Filament) for 3D printing The material can get the best tensile strength within the controllable range of printing equipment. The parameters of this experimental process are the nozzle temperature, nozzle moving speed, and the thickness of the layer. The Taguchi experiment design is adopted, and the L4 orthogonal table is used for the experiment. The ANOVA variation analysis is used to find the control factors that have more significant effects.According to the experimental results, the mechanical properties are shown in the S/N reaction chart of the quality characteristic reaction table. The best combination is nozzle speed 40mm/s, nozzle temperature 240°C, and layer thickness 0.15mm. The strength of 31.88 MPa is the best value. Through the analysis of variance, the significant control factors are found. The significant control factors have the largest contribution to the intensity. The parameters include nozzle temperature and layer thickness. The results of the optimized analysis of the comparison quality characteristic response table and the optimized combination of parameters obtained by the ANOVA variation analysis are the same, which can ensure the accuracy of the experiment. The second part is the discussion of electromagnetic wave shielding effect. The measurement of aluminum foil, polylactic acid and polylactic acid containing graphene and red copper is used to compare the electromagnetic shielding effect. The transformer is measured in the frequency range of 30Hz~300Hz. When the substrate is doped with different materials and the same distance, the shielding effect is graphene>red copper>pure polylactic acid. As the thickness of the aluminum sheet increases, the shielding effect increases. Finally, put forward suggestions for possible improvements and future applications.


Keywords: Graphene, Additive Manufacturing, Fused Deposition Modeling, Taguchi method
Electromagnetic shielding
目錄
摘要 I
ABSTRACT II
誌謝 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1前言 1
1-2文獻回顧 3
1-3研究動機與目的 11
1-4論文架構 13
第二章 理論說明 14
2-1積層製造技術 14
2-2電磁波遮蔽原理 18
2-3材料性質檢測 20
2-4田口實驗設計 23
第三章 研究方法與流程 31
3-1實驗材料與規格 31
3-2列印機台改良 34
3-3實驗流程與規劃 38
3-4石墨烯聚乳酸積層製造最佳參數選擇 38
3-5電磁波遮蔽量測方法 40
3-6導電率量測方法 42
第四章 結果與討論 43
4-1石墨烯聚乳酸積層製造最佳化實驗結果 43
4-2電磁波遮蔽效率實驗結果 47
4-3導電率量測實驗結果 51
第五章 結論與未來展望 52
5-1結論 52
5-2未來展望 52
參考文獻 54
參考文獻
[1]H. I. Medekkub-Castillo and J.E.P Torres, "Rapid prototyping and manufacturing: A review of current technologies", in 2009 ASME International Mechanical Engineering Congress and Expositionm IMECE2009, November 13, 2009 – Nevember 19, 2009, Lake Buena Vista, FL, United states, pp. 609-621, 2010.
[2]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, Vol. 306, pp. 666-669, 2004.
[3]D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price1 and J. M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons", Nature, Vol. 458, pp. 872, 2009.
[4]L. Jiao, L. Zhang, X. Wang, G. Diankov and H. Dai, "Narrow graphene nanoribbons from carbon nanotubes", Nature, Vol. 458, pp. 877, 2009.
[5]成會明,奈米碳管,五南圖書出版股份有限公司,民國93年。
[6]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, "Electronic confinement and coherence in patterned epitaxial graphene", Science, Vol. 312, pp. 1191-1196, 2006.
[7]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science, Vol. 324, pp. 1312-1314, 2009.
[8]Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer and P. Avouris, "Operation of graphene transistors at gigahertz frequencies", Nano Lett, Vol. 9, pp. 422-426, 2009.
[9]Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill and P. Avouris, "100-GHz transistors from wafer-scale epitaxial graphene", Science, Vol. 327, pp. 662, 2010.
[10]C. Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang and L. J. Li, "Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors", ACS Nano, Vol. 4, pp. 5285-5292, 2010.
[11]M. Hofmann, D. Nezich, A. Reina and J. Kong, "In-situ sample rotation as a tool to understand chemical vapor deposition growth of long aligned carbon nanotubes", Nano Lett, Vol. 9, pp. 30-35, 2008.
[12]S. Dul, L. Fambri and A. Pegoretti, "Fused deposition modelling with ABS-graphene nanocomposites", Composites: Part A, Vol. 85, pp. 181-191, 2016.
[13]X. Wei, D. Li, W. Jiang, Zheming. Gu, X. Wang, Z. Zhang and Z. Sun, "3D printable graphene composites-supplementary information", Scientific Reports, Vol. 5, 11181, 2015.
[14]S. H. Xie, Y. Y. Liu and J. Y. Li, "Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes", Applied Physics Letters, Vol. 92 , 243121, 2008.
[15]H. J. Salavagione, G. Martinez, and M .A. Gomez, "Synthesis of poly (vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties", Journal of Materials Chemistry, Vol. 19, pp. 5027-5032, 2009.
[16] S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson and D. A. Hutchins, "A simple, low-cost conductive composite material for 3d printing of electronic sensors", PLos One, Vol. 7, 49365, 2012.
[17]IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes IMWS-AMP, Pavia, Italy, 2017.
[18]ASTM International. ASTM D3039/D3039M-00, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials , 2006.
[19]M. Li, J. Nuebel, J. L. Drewniak, R. E. Dubroff, T. H. Hubing and T. V. Doren, "EMI from airflow aperture arrays in shielding enclosure experiments, FDTD and MOM modeling", IEEE Transactions on Electomagnetic Compatibility, Vol. 42, pp. 265-275, 2000.
[20]R. C. Hansen and J. R. Moser, "Loop-shielding-loop shielding effectiveness", IEEE Transaction on Electromagnetic Compatibility, Vol. 41, pp. 144-146, 1999.
[21]G. Alaimo, S. Marconi, L. Costato and F. Auricchio, "Influence of meso-structure and chemical composition on FDM 3d-printed parts", Composites Part B, Vol. 3, 27100, 2017.
[22]L. Hongmin, Engineering Electromagnetic Compatibility, Xidian University Press, 2003.
[23]M. Shuangbin, Modeling and analysis of FDTD on shield with aperture, Doctor degree paper, 2008.
[24]A. R. Studart, "Additive manufacturing of biologically-inspired materials", Chemical Society Reviews, Vol. 45, pp. 359-376, 2016.
[25]C.W. Hull, Apparatus for production of three-dimensional objects by stereo-lithography, U.S. Patent, Vol. 4, pp. 330, 1986.
[26]S. Junk, J. Sämann-Sun, M. Niederhofer, "Application of 3d printing for the rapid tooling of thermoforming moulds", Proceedings of the 36th International Matador Conference, Vol. 4 pp. 369-372, 2010.
[27]K. Lee, Principles of CAD/CAM/CAE systems, University: Pearson Higher Education & Professional Group, 1999.
[28]曾竣煌,「熔融沉積成型技術之路徑規劃與提升製造效率研究」,碩士論文,國立中央大學,民國106年。
[29]工業技術研究院化學工業研究所,「導電性高分子專題調查報告」,1998。
[30]J. D. M. Osburnm and R. J. Donald, A handbook series on electromagnetic interference and compatibility (12 volume set), Interference Control Technologies, Inc., 1988.
[31]D. K. Cheng. Field and Wave Electromagnetic, 2nd Edition, Addison-Wesley publishing Company, 1989.
[32]劉偉均,材料實驗,台北市,華泰書局,民國 86 年。
[33]T. Schmidt, F. Gärtner, H. Assadi and H. Kreye, “Development of a generalized parameter window for cold spray deposition”, Acta materialia, Vol. 54, pp. 729-742, 2006.
[34]蘇朝墩,產品穩健設計:田口品質工程方法的介紹和應用,第二版,中華民國品質協會,民國88年。
[35]李輝煌,田口方法品質設計的原理與實務,第四版,高立圖書有限公司,民國100年。
電子全文 電子全文(網際網路公開日期:20250701)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔