(3.236.231.61) 您好!臺灣時間:2021/05/15 23:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林彥廷
研究生(外文):Yen-Ting Lin
論文名稱:五元富鋁低密度高熵合金之微結構觀察與其機械性質研究
論文名稱(外文):Microstructure and mechanical properties of low density Al-rich quinary high entropy alloys
指導教授:鄭憲清
指導教授(外文):Shian-Ching Jang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:100
中文關鍵詞:高熵合金低密度
外文關鍵詞:high-entropy alloyslow density
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高熵合金具有卓越的機械性質,但大都密度偏高,這在能耗的觀點上是較不利的,而如果能設計出一個低密度的高熵合金,又同時擁有良好的機械性質,便有機會能夠取代市面上的鋁合金及鈦合金。
為了能夠達到設計需求,採用五元非等量高熵合金的設計方法,以低密度的Al做為主要元素,添加Ti、Cr、Mn、V四種元素,藉由控制Al元素在50%原子比例,製作Al50TiCrMnV合金系統,成功製作出密度在5g/cm3以下的雙相低密度高熵合金。
在合金設計中,藉由調整Ti、Cr、Mn、V元素的比例,探討各個元素在這五元高熵合金系統的影響。本實驗合金結構大都為FCC + BCC雙相,但在Ti元素不夠充足的情況下,會使相結構轉變,因此合金設計只要注意Ti含量足夠的情況下,即可達成雙相之五元低密度高熵合金。根據測試結果,增加Ti元素會使材料軟化;而Mn元素並不扮演著會大幅影響強度的角色;另外,Cr、V這兩種元素的添加量增加,都會對硬度及強度有明顯的增幅,因此可藉由些許元素的改變,以得到期望之機械性質。其中在Al50TiCrMn高熵合金系統裡,機械性質最好的成分為Al50Ti20Cr10Mn15V5,其降伏強度為705MPa,最大抗壓強度到達1820MPa,壓縮率則是36%。根據微結構的觀察,發覺相的形貌與機械性質會有關聯,相形貌如果呈現細針狀和竹葉狀這種細長樣並且整體排序整齊,都可預期會有不錯的機械性質。
Most high-entropy alloys (HEAs) possess excellent mechanical properties but high density. The resulting properties are not suitable in energy and transportation areas. In this work, a novel series light-weight (≦ 5 g/cm3) HEA with good mechanical properties will be developed which can replace the commercial aluminum alloys and titanium alloys in the near future.
To meet the requirement of light-weight, light elements were chosen to design the alloys accompanied with non-equiatomic concept. Aluminum was designated as the principal element, and other minor elements such as the titanium, chromium, manganese and vanadium were added to investigate the effect of different elements. In this study, light-weight Al50TiCrMnV series alloys were introduced. The XRD results revealed that these as-cast alloys are composed of dual-phase (BCC + FCC) structure. The structure of these as-cast alloys and the morphology of FCC phase are strongly influenced by the Ti and Mn content. Additionally, the compressive strength of these as-casted alloys are affected by the Cr and V content. The optima mechanical properties occurred at the alloy of Al50Ti20Cr10Mn15V5 with compressive yield strength of 705 MPa, ultimate compressive strength of 1820 MPa, and plastic strain of 36 %. According to the observation of SEM, the morphology of FCC phase will influence their mechanical properties. With fine FCC phases, these as-cast alloys will demonstrate excellent mechanical compressive properties and outstanding specific compressive strength which led it to be a promising materials on the application of energy industries.
中文摘要 I
Abstract II
致謝 III
總目錄 IV
表目錄 VI
圖目錄 VII
一、 緒論 1
1 - 1前言 1
1 - 2 研究目的 1
二、文獻回顧 2
2-1 高熵合金之發展與定義 2
2-2 高熵合金之形成條件 2
2-3 高熵合金四大效應[5, 18] 4
2-3-1 高熵效應 4
2-3-2 晶格應變效應 5
2-3-3 遲緩擴散效應 5
2-3-4 雞尾酒效應 6
2-4 非等比例高熵合金 6
2-5 低密度高熵合金 7
2-5-1 非等比例低密度高熵合金 8
三、實驗方法 14
3-1 元素選擇及設計方法 14
3-2 合金製備 14
3-2-1 合金配製與熔煉 14
3-2-1-1 電弧熔煉 15
3-2-1-2 感應熔煉 15
3-3 合金密度量測 16
3-4 均質化熱處理 16
3-5 合金之微結構分析 16
3-5-1 光學顯微鏡(Optical Microscopy, OM) 17
3-5-2 X光繞射儀(X-ray diffractometer, XRD) 17
3-5-3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)
17
3-5-4 能量散射光譜儀(Energy-dispersive X-ray
spectroscopy, EDS) 18
3-6 熱性質分析 18
3-6-1 熱示差分析儀(Differential scanning calorimetry,
DSC) 18
3-7 機械性質分析 18
3-7-1 維氏硬度測試 18
3-7-2 壓縮測試 19
四、結果討論 31
4-1 第一階段 31
4-1-1 密度計算 31
4-1-2 各元素之影響 31
4-1-2-1 Ti元素之影響 31
4-1-2-2 Cr元素之影響 33
4-1-2-3 Mn元素之影響 33
4-1-2-4 V元素之影響 34
4-1-3 各元素之影響統整 35
4-2 第二階段 36
4-2-1 Al50(Ti2Cr1Mn2)50-xVx 36
4-2-2 Al50Ti20Cr10Mn20-xVx 37
4-2-3 其他成分嘗試 37
4-3 第三階段 37
4-3-1 添加微量元素 37
4-3-2 熱處理 38
4-4 第四階段 – Al50(TiCrMn)45V5之冷卻速率影響 38
4-4-1 感應熔煉 39
4-4-2 機械性質 39
4-4-3 微結構 40
五、結論 82
參考文獻 83
1. ASM International. Handbook Committee, “Properties and Selection : Irons, Steels, and High-Performance Alloys”, Vol.1, Materials Park, OH : ASM International, 1990.
2. ASM International. Handbook Committee, “Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”, Vol.2, Materials Park, OH : ASM International, 1990.
3. K. H. Huang, J. W. Yeh. “A Study On Multicomponent Alloy Systems containing Equal-Mole Elements”. Department of Materials Science and Engineering. Hsinchu: National Tsing Hua University, 1996.
4. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, “Nanostructure High-Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes”, ADVANCED ENGINEERING MATERIALS, Vol.6, pp.299-303, 2004.
5. J. W. Yeh, “Recent progress in high-entropy alloys”, Ann. Chim.-Sci. Mat. 31 pp.633-648, 2006.
6. B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys”, Materials Science and Engineering A, Vol.375-377, pp.213-218, 2004.
7. S. Wang, Z. Chen, P. Zhang, K. Zhang, C.L. Chena, B.L. Shen, “Influence of Al content on high temperature oxidation behavior of AlxCoCrFeNiTi0.5 high entropy alloys” Vacuum Vol.163, pp.263-268, 2019.

8. M. Choi, I. Ondicho, N. Park, N. Tsuji, “Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure”, Journal of Alloys and Compounds, Vol.780, pp.959-966, 2019.
9. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, P. K. Liaw. “Refractory high-entropy alloys”, Intermetallics, Vol.18, pp.1758-1765, 2010.
10. L. Lilensten, J. Couzinié, L. Perrière, J. Bourgon, N. Emery and I. Guillot, “New structure in refractory high-entropy alloys”, Materials Letters, Vol.132, pp.123-125, 2014
11. A. Takeuchi, A. Inoue, “Quantitative evaluation of critical cooling rate for metallic glasses”, Materials Science and Engineering: A, Vol.304-306, pp.446-451, 2001.
12. A. R. Miedema, P. F. de Châtel and F. R. de Boer. “Cohesion in alloys — fundamentals of a semi-empirical model”, Physica B+C, Vol.100, pp.1-28, 1980.
13. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K. Liaw. “Solid-Solution Phase Formation Rules for Multi-component Alloys”, Advanced Engineering Materials, Vol.10, pp.534-538, 2008.
14. X. Yang and Y. Zhang. “Prediction of high-entropy stabilized solid-solution in multi-component alloys”, Materials Chemistry and Physics, Vol. 132, pp.233-238, 2012.
15. S. GUO, C. T. LIU, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase”, Progress in Natural Science: Materials International, Vol.21, pp.433-446, 2011.
16. D. Gaskell, “Introduction to the thermodynamics of materials”, 3rd ed, Washington: Taylor & Francis, pp. 80-84, 1995.

17. R. Swalin, “Thermodynamics of solids”, 2nd ed, New York: Wiley, pp.35-41, 1972.
18. J. W. Yeh. “高熵合金的發展”, 華岡工程學報, Vol.27, pp.1-18, 2011.
19. Q. H, Y. Yan, “On Lattice Distortion in High Entropy Alloys”, Frontiers in Materials, Vol. 5, Article 42, 2018.
20. C. R. LaRosa, M. Shih, C. Varvenne, M. Ghazisaeidi, “Solid solution strengthening theories of high-entropy alloys”, Materials Characterization, Vol.151, pp.130-137, 2019.
21. J. W. Yeh, S. Y. Chang, Y. D. Honga, S. K. Chenc and S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements”, Materials Chemistry and Physics, Vol.103, pp.41-46, 2007.
22. K. Y. Tsai, M. H. Tsai, J. W. Yeh, “Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys”, Acta Materialia, Vol.61, pp.4887-4897, 2013.
23. S. Ranganathan, “Alloyed pleasures: Multimetallic cocktails”, CURRENT SCIENCE, Vol.85, pp.1404-1406, 2003.
24. L. S. Zhang, G. L. Ma, L. C. Fu and J. Y. Tian, “Recent Progress in High-entropy Alloys”, Advanced Materials Research, Vol.631-632, pp.227-232, 2013.
25. F. Müller, B. Gorr, H. J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, M. Heilmaier, “On the oxidation mechanism of refractory high entropy alloys”, Corrosion Science, Vol.159, pp.108161, 2019.
26. Y. Zhao, M. Wang, H. Cui, Y. Zhao, X. Song, Y. Zeng, X. Gao, F. Lu, C. Wang, Q. Song, “Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys”, Journal of Alloys and Compounds, Vol.805, pp.585-596, 2019.

27. H. Wu, S. Huang, C. Zhu, H. Zhu, Z. Xie, “Influence of Cr content on the microstructure and mechanical properties of CrxFeNiCu high entropy alloys”, Progress in Natural Science: Materials International, Available online 17 February 2020.
28. Z. Li, D. Raabe, “Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties”, JOM, Vol.69, pp.2099–2106, 2017.
29. M. J. Yao, K. G. Pradeep, C. C. Tasan and D. Raabe, “A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility”, Scripta Materialia, Vol.72-73, pp.5-8, 2014
30. D. C. Ma, M. J. Yao, K. G. Pradeep, C. C. Tasan, H. Springer and D. Raabe, “Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys”, Acta Materialia, Vol.98, pp.288-296, 2015.
31. O. N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, “Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys”, Intermetallics, Vol.19, pp.698-706, 2011.
32. O. N. Senkov, J. M. Scott, S. V. Senkov, D. B. Miracle, C. F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy”, Journal of Alloys and Compounds, Vol.509, pp.6043-6048, 2011.
33. O. N. Senkov, S. V. Senkov, D. B. Miracle, C. Woodward, “Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system”, Materials Science and Engineering: A, Vol.565, pp.51-62, 2013.

34. O. N. Senkov, S. V. Senkov, C. Woodward, D. B. Miracle, “Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis”, Acta Materialia, Vol.61, pp.1545-1557, 2013.
35. K. K. Yang, T. C. Yang, C. C. Juan, T. S. Chin, C. W. Tsai, J. W. Yeh, “A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35”, Science China Technological Sciences, Vol.61, pp.184-188, 2018
36. R. Li, J. C. Gao, K. Fan, “Microstructure and Mechanical Properties of MgMnAlZnCu High Entropy Alloy Cooling in Three Conditions” Materials Science Forum, Vol.686, pp.235-241, 2011.
37. R. Li, J. Gao, K. Fan, “Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys”, Materials Science Forum, Vol.650, pp.265-271, 2010.
38. Y. C. Liao, P. S. Chen, C. H. Li, P. H. Tsai, J. S. C. Jang, “Development of Novel Lightweight Dual‐Phase Al‐ Ti‐Cr‐Mn‐V Medium‐Entropy Alloys with High Strength and Ductility”, Entropy, Vol.22, pp.74, 2020.
39. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, “High-entropy alloy: challenges and prospects”, Materials Today, Vol.19, pp.349-362, 2016.
40. H. Luo, Z. Li, A. M. Mingers, D. Raabe,“Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution”, Corrosion Science, Vol.134, pp.131-139, 2018.
41. R. Feng, M. C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J. A. Hawk, Y. Zhang and P. K. Liaw, “Design of Light-Weight High-Entropy Alloys”, Entropy, Vol.18, p.333, 2016.
電子全文 電子全文(網際網路公開日期:20250831)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top