(3.238.96.184) 您好!臺灣時間:2021/05/12 16:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳威霖
研究生(外文):Wei-Lin Chen
論文名稱:利用改良液相剝離法提高銻烯合成產率與均質性之研究
論文名稱(外文):High yield and uniformity of few-layer antimonene by modified liquid-phase exfoliation
指導教授:施登士蘇清源
指導教授(外文):Teng-Shih ShihChing-Yuan Su
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:70
中文關鍵詞:改良液相剝離法銻烯
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
銻烯(Antimonene)為翹曲蜂巢狀結構(bucked honeycomb structure)的新興二維半導體材,因其本身具有2.28 eV的寬能隙、1329 cm2/Vs的載子遷移率,並且在大氣環境中的化學穩定性相較於二硒化銦(InSe2)以及黑磷烯(phosphorene)更為穩定,因此被視為具有發展潛力的二維材料之一。然而,銻烯所欠缺的關鍵技術為一種有效率、可大量製造高品質銻烯的生產製程。現今主流製備銻烯的方法有許多種,其中液相剝離法(liquid phase exfoliation)是目前最有發展潛力的合成方法。
不過目前液相剝離所生產的銻烯片層厚度大多約為幾百奈米(nm)到幾個微米(µm),而片層厚度少於幾十奈米(nm)的銻烯又面臨著片徑大小過小的問題,因此限制了實際的應用。因此本研究展示一種改良液相剝離製程的方法,通過對銻金屬粉末進行焠火處理,因焠火處理時銻金屬粉末表面因高溫發生昇華現象,而表面片層昇華導致銻金屬粉末整體厚度下降,使得液相剝離過程中的銻金屬粉末更容易剝離出較薄的片層,降低銻烯平均厚度並且提高銻烯產率。
實驗結果由接觸角分析以及原子力顯微鏡(Atomic Force Microscopy)分析得知IPA為最適合銻金屬液相剝離之溶劑,而平均片徑大小63.4奈米、平均片層厚度為1.46奈米,並且從本實驗所生產之少層銻烯統計分析中發現本實驗有助於提高銻烯尺寸均一性,使用可紫外光-可見光光譜(Ultraviolet – Visible Spectroscopy)可計算出光能隙為2.79 eV,而產率達到36.1 %。並且從X射線繞射圖譜(X-Ray Diffraction)結果發現沿著(012)晶面最為容易剝離出少層的銻烯。此方法提供了一種簡單、快速且具備大量生產的途徑,並且有助於降低成本效益以及提高產量的優勢。
Antimonene is an emerging two-dimensional semiconductor material that is buckled honeycomb structure, wide bandgap 2.28 eV, and 1329 cm2/Vs carrier mobility. Compared to well-studied 2D materials such as InSe2 or phosphorene, antimonene has higher chemical stability under the atmosphere. Therefore, it is regarded as one of the next-generation electronics materials. However, the bottle-neck of antimonene is out of a proper method to produce high-quality antimonene. Nowadays, the frequently-used method is liquid-phase exfoliation; however, the as-prepared antimonene can only have around hundreds of nanometers to a few micrometers thick or less than tens nanometer in lateral size, thus limits the practical application of of antimonene .
Herein, we provide an improved liquid-phase exfoliation by quenching antimony powder in advance. During the quenching process, the surface of the antimony powder not only flattens but also declines the thickness due to the high temperature. Moreover, this process also plays a main role to assist the reduction of the thickness and increasing the production yield of exfoliated antimonene flakes.
As a result, atomic force microscopy (AFM) analysis shows the average flake size is 63.4 nm, and the average thickness is 1.46 nm; besides, the statistical analysis provides the evidence that this method allows to produce the high-uniformity in lateral size of antimonene. The optical band gap, analyzed by ultraviolet-visible spectrophotometry, is 2.79 eV, and the yield of antimonene is 36.1%. Finally, the X-ray diffraction (XRD) results indicate that the antimonene film can easily exfoliate along the (012) plane. This method provides a high-efficiency, cost-effective, and mass-production method for high-quality antimonene.
摘要 i
Abstract ii
致謝 iii
總目錄 iv
圖目錄 vii
表目錄 ix
公式目錄 x
第一章 緒論 1
1-1 前言 1
第二章 研究背景與文獻回顧 2
2-1 銻烯之特性介紹 2
2-2 製備銻烯之方法 4
2-2-1 機械剝離法 4
2-2-2 凡德瓦外延生長法 6
2-2-3 分子束外延生長法 7
2-2-4 電化學剝離法 8
2-2-5 化學氣相沉積法 10
2-2-6 液相剝離法 11
2-3 液相剝離之原理介紹 14
2-4 預處理之原理介紹 18
2-5 研究動機 19
第三章 實驗方法與分析原理 20
3-1 實驗用品與儀器 20
3-1-1 實驗用品 20
3-1-2 實驗儀器 20
3-2 實驗架構 22
3-3 實驗流程 23
3-3-1 液相剝離之溶液選擇 23
3-3-2 銻金屬粉末之預處理 23
3-3-3 預處理對液相剝離的影響 24
3-4 材料分析 25
3-4-1 光學顯微鏡 (Optical Microscopes, OM) 25
3-4-2 穿透式電子顯微鏡 (Transmission Electron Microscope,TEM) 25
3-4-4 X射線繞射儀 (X-ray diffractometer,XRD) 25
3-4-5 紫外光-可見光光譜儀(Ultraviolet – visible spectroscopy,UV - Vis) 25
3-4-6 拉曼光譜分析 (Raman Spectroscopy) 26
3-4-7 原子力顯微鏡(Atomic Force Microscope,AFM) 26
3-4-8 能量色散X射線譜(Energy-dispersive X-ray spectroscopy,EDS) 27
3-4-9 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 27
3-4-10 螢光分析儀(Fluorescence Spectrometer,FL) 28
第四章 結果與討論 29
4-1 液相剝離之溶劑選擇(The study of solvents selection) 29
4-1-1 不同溶劑對液相剝離之結果分析 29
4-1-2 原子力顯微鏡統計分析 29
4-1-3 穿透式電子顯微鏡分析 31
4-1-4 拉曼光譜分析 32
4-1-5 紫外光-可見光光譜分析 32
4-1-6 溶劑與銻金屬之接觸角分析 34
4-2 銻金屬粉末之預處理(The pretreatment of Sb powder) 35
4-2-1 預處理後銻金屬粉末之分析 35
4-2-2 拉曼光譜分析 36
4-2-3 X射線繞射分析 37
4-2-4 掃描式電子顯微鏡分析 38
4-2-5 重量變化分析 39
4-2-6 焠火處理原理分析 40
4-3 預處理對液相剝離結果的影響(The effect of pretreatment to liquid phase exfoliation) 40
4-3-1 原子力顯微鏡分析 41
4-3-2 拉曼光譜分析 43
4-3-3 X射線繞射分析 44
4-3-4 穿透式電子顯微鏡分析 45
4-3-5 紫外光-可見光光譜分析 46
4-3-6 產率分析 47
4-3-7 螢光分析 48
4-3-8 X射線光電子能譜分析 50
4-4 各種液相剝離之少層銻烯比較 (Compare with previous works) 52
第五章 結論 53
參考文獻 54
1. Ming-Yang Li, et al., How 2D semiconductors could extend Moore’s law. 2019.
2. Wang, G., R. Pandey, and S.P. Karna, Atomically thin group v elemental films: theoretical investigations of antimonene allotropes. ACS Appl Mater Interfaces, 2015. 7(21): p. 11490-6.
3. Mounet, N., et al., Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 2018. 13(3): p. 246-252.
4. Zhang, S., et al., Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev, 2018. 47(3): p. 982-1021.
5. Zhao, M., et al., Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem Soc Rev, 2018. 47(16): p. 6267-6295.
6. Zhang, S., et al., Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angew. Chem. Int. Ed., 2016. 55: p. 1666 –1669.
7. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. SCIENCE, 2004. 306(5696): p. 666-669.
8. Chang, H.-C., et al., Synthesis of Large-Area InSe Monolayers by Chemical Vapor Deposition. 2018. 14(39): p. 1802351.
9. Podzorov, V., et al., High-mobility field-effect transistors based on transition metal dichalcogenides. Applied Physics Letters, 2004. 84(17): p. 3301-3303.
10. Gutierrez, H.R., et al., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett, 2013. 13(8): p. 3447-54.
11. Du, H., et al., Recent developments in black phosphorus transistors. Journal of Materials Chemistry C, 2015. 3(34): p. 8760-8775.
12. Ares, P., et al., Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions. Adv Mater, 2016. 28(30): p. 6332-6.
13. Ji, J., et al., Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat Commun, 2016. 7: p. 13352.
14. Sun, X., et al., van der Waals Epitaxy of Antimony Islands, Sheets, and Thin Films on Single-Crystalline Graphene. ACS Nano, 2018. 12(6): p. 6100-6108.
15. Wu, X., et al., Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe2. Adv Mater, 2017. 29(11).
16. Gu, M., et al., Direct Growth of Antimonene on C-Plane Sapphire by Molecular Beam Epitaxy. Applied Sciences, 2020. 10(2): p. 639.
17. Lu, L., et al., Broadband Nonlinear Optical Response in Few-Layer Antimonene and Antimonene Quantum Dots: A Promising Optical Kerr Media with Enhanced Stability. Advanced Optical Materials, 2017. 5(17): p. 1700301.
18. Marzo, A.M.L., et al., Towards Antimonene and 2D Antimony Telluride through Electrochemical Exfoliation. Chemistry, 2020. 26(29): p. 6583-6590.
19. Wu, Q. and Y.J. Song, The environmental stability of large-size and single-crystalline antimony flakes grown by chemical vapor deposition on SiO2 substrates. Chem Commun (Camb), 2018. 54(69): p. 9671-9674.
20. Assebban, M., et al., Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets. 2D Materials, 2020. 7(2): p. 025039.
21. Gibaja, C., et al., Liquid phase exfoliation of antimonene: systematic optimization, characterization and electrocatalytic properties. Journal of Materials Chemistry A, 2019. 7(39): p. 22475-22486.
22. Gu, J., et al., Liquid-Phase Exfoliated Metallic Antimony Nanosheets toward High Volumetric Sodium Storage. Advanced Energy Materials, 2017. 7(17): p. 1700447.
23. Lin, W., et al., A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power. Nano Research, 2018. 11(11): p. 5968-5977.
24. Xue, T., et al., Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat Commun, 2019. 10(1): p. 28.
25. Tao, W., et al., Antimonene Quantum Dots: Synthesis and Application as Near-Infrared Photothermal Agents for Effective Cancer Therapy. Angew Chem Int Ed Engl, 2017. 56(39): p. 11896-11900.
26. Gibaja, C., et al., Few-Layer Antimonene by Liquid-Phase Exfoliation. Angew Chem Int Ed Engl, 2016. 55(46): p. 14345-14349.
27. Wang, X., et al., Bandgap-Tunable Preparation of Smooth and Large Two-Dimensional Antimonene. Angew Chem Int Ed Engl, 2018. 57(28): p. 8668-8673.
28. Xiao, Q., et al., Antimonene-based flexible photodetector. Nanoscale Horizons, 2020. 5(1): p. 124-130.
29. Wang, X., J. Song, and J. Qu, Antimonene: From Experimental Preparation to Practical Application. Angew Chem Int Ed Engl, 2019. 58(6): p. 1574-1584.
30. Castellanos-Gomez, A., et al., Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. Small, 2011. 7(17): p. 2491-7.
31. Mestl, G., et al., Sb2O3/Sb2O4 in reducing/oxidizing environments: an in situ Raman spectroscopy study. J. Phys. Chem., 1994. 98(44): p. 11276–11282.
32. Coleman, J.N., Liquid Exfoliation of Defect-Free Graphene. Accounts of Chemical Research, 2013. 46(1): p. 14–22.
33. Hanlon, D., et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat Commun, 2015. 6: p. 8563.
34. Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 2008. 3(9): p. 563-8.
35. Hossain, M.M., et al., High yield and high concentration few-layer graphene sheets using solvent exfoliation of graphite with pre-thermal treatment in a sealed bath. Materials Letters, 2014. 123: p. 90-92.
36. Gao, Y., et al., Tailoring natural layered β-phase antimony into few layer antimonene for Li storage with high rate capabilities. Journal of Materials Chemistry A, 2019. 7(7): p. 3238-3243.
37. Gusmao, R., et al., Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. Angew Chem Int Ed Engl, 2017. 56(46): p. 14417-14422.
38. Li, F., et al., Unlocking the Electrocatalytic Activity of Antimony for CO2 Reduction by Two-Dimensional Engineering of the Bulk Material. Angew Chem Int Ed Engl, 2017. 56(46): p. 14718-14722.
39. Zhang, Y., et al., In Situ Exfoliation and Pt Deposition of Antimonene for Formic Acid Oxidation via a Predominant Dehydrogenation Pathway. Research, 2020. 2020: p. 1-11.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔