(3.236.122.9) 您好!臺灣時間:2021/05/14 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾偉智
研究生(外文):Wei-Chih Tseng
論文名稱:多噴頭置換模組開發與混合式三維生物列印之研究
論文名稱(外文):Development of Multi-nozzle Exchange Module and Research on Hybrid Three-dimensional Bioprinting
指導教授:廖昭仰
指導教授(外文):Chao-Yaug Liao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:99
中文關鍵詞:組織工程生物列印Pluronic F-127混合列印多噴頭置換
外文關鍵詞:Tissue engineeringBioprintingPluronic F-127Hybrid printingMulti-nozzle exchange
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於健康意識觀念抬頭,生醫工程屢屢被關注。因此組織工程相關研究成為近期熱門研究主題之一,其與積層製造結合成為3D 生物列印技術,在生物支架列印方面不僅解決複雜圖形之製造,也同時模擬天然細胞外基質以提供細胞良好的生存環境。
常見的生物列印機都以單種列印方式製作支架,若以製作複雜皮膚結構,例如: 燒燙傷皮膚及糖尿病患者慢性潰爛之皮膚等…表皮及真皮層損傷的案例,較難呈現出真實的樣貌,導致組織生長不良。因此,本研究以混和列印為目的,將兩種不同的列印方式集成於生物列印機上,並依照不同的結構特性選擇適合的沉積方式,以適應複雜的支架需求。硬體方面,開發包含氣動擠出式及微型閥噴墨式的多噴頭置換模組,並驗證兩個噴頭疊加列印的平均偏差值,確保對位精度以適應複雜的支架需求。軟體方面,使用C#程式語言控制置換流程、高度校正及溫度監控,達到機台自動化的目的。
本研究以Gelatin 及Pluronic F-127 混合而成的熱敏性複合水凝膠作為生物墨水,並使整體列印溫度控制在37℃,以便未來進行細胞培養的實驗。在噴頭方面也發展緊湊型加熱套,除了將加熱區域極小化以改善加熱效率,也可以即時監控針頭溫度及沉積的環境溫度,防止噴頭堵料及維持材料流變性質。本研究除了分析兩種列印方式的列印參數對於股線線徑之影響,在支架列印的部分也利用氣動擠出式沉積25 層約2.5mm 高的支架以模擬真皮組織,並由顯微鏡量測其孔洞的平均直徑約為0.1mm,再利用微型閥於支架表面沉積0.5mm 高的生物墨水以模擬表皮組織,最終製作出3mm 高之皮膚支架。若未來列印含細胞生物墨水時,不僅能使細胞更為均勻,也能更仿真成為皮膚結構。
Nowadays, as the concept of health awareness rises, biomedical engineering has been brought to public attention. Therefore, tissue engineering has become one of the hottest research topics. It combines with additive manufacturing to become 3D bioprinting technology, which not only solves the manufacturing of complex scaffold but mimics the natural extracellular matrix to provide a good living environment for cells.
Common Bioprinter used to manufacture scaffold with single printing mode, if it manufactures complex skin structures, such as burned skin and chronic ulcerated skin that epidermis and dermis are damaged. It is difficult to mimic the real appearance and also make tissues grow worse. Therefore, the purpose of this research is to integrate two different printing methods on bioprinter and choose the appropriate deposition method according to different structural characteristics to meet the needs of complex scaffolds. In terms of hardware, a multi-nozzle exchange module including pneumatic extrusion and micro-valve inkjet is developed.
Moreover, the average deviation value of the two nozzles superimposed printing is verified to ensure the accuracy of alignment that meets the complex scaffold requirements. In terms of software, the C# programming language is used to control the exchange process, height calibration, and temperature monitoring to achieve the purpose of machine automation.
In this research, a thermosensitive composite hydrogel composed of Gelatin and Pluronic F-127 was used as a bio-ink, and the overall printing temperature was controlled at 37°C for future cell culture experiments. In the aspect of the nozzle, a compact heating sleeve has been developed, which can instantly monitor the temperature of the needle and the ambient temperature of the deposition level to prevent the nozzle from clogging and maintain the rheological properties of the material. In addition to studying the printing parameters of different printing methods, this study also used pneumatic extrusion to deposit 25 layers of about 2.5mm high scaffold to mimic dermal tissue, and use a microscope to measure the diameter of the scaffold hole is about 0.1mm. Furthermore, use the microvalve to deposit bioink
with 0.5mm high on the surface of the scaffold to mimic the epidermal tissue, and finally produce a 3mm high skin scaffold. If the bio-ink containing cells is printed in the future, it will not only make the cells more uniform, but also more simulation to become a skin structure.
摘要................................I
ABSTRACT ..........................II
誌謝 ...............................III
目錄 ...............................IV
圖目錄 .............................VI
表目錄 ............................ IX
第一章 緒論 .........................1
1-1 前言 ..........................1
1-2 文獻回顧 ......................2
1-3 研究動機與目的 ................12
1-4 論文架構 ......................13
第二章 研究與理論說明 ................14
2-1 組織工程簡介 ..................14
2-2 組織工程結合積層製造之簡介 ......17
2-3 生物支架材料簡介 ...............27
2-4 先期生物列印系統簡介 ...........29
2-5 多噴頭校正之方法 ...............31
第三章 系統架構與實驗方法 .............33
3-1 多噴頭置換各模組簡介 ...........33
3-2 使用之生物墨水介紹及製備方法 ....41
3-3 基於溫控之緊湊型加熱套設計 ......44
3-4 人機介面控制流程 ...............46
3-5 列印參數之設計 .................49
第四章 實驗結果與討論 .................53
4-1 複合水凝膠之溫度分析 ............53
4-2 多噴頭對位之驗證結果 ............56
4-3 緊湊型加熱套內部之列印溫度分析 ...59
4-4 各噴頭之列印參數分析 ............64
4-5 混合列印之支架製作 ..............74
第五章 結論與未來展望 .................78
5-1 結論 ..........................78
5-2 未來展望 .......................79
參考文獻 .............................80
[1] United Network for Organ Sharing:Transplant trends, Available at: https://unos.org/data/transplant-trends/.
[2] N. Cubo, M. Garcia, J. F. Cañizo, D. Velasco and J. L. Jorcano, “3D Bioprinting of Functional Human Skin Production and in Vivo Analysis”, Biofabrication, Vol. 9, 015006, 2016.
[3] J. H. Shim, J.Y. Kim, M. Park, J. Park and D. W. Cho, “Development of A Hybrid Scaffold with Synthetic Biomaterials and Hydrogel Using Solid Freeform Fabrication Technology”,Biofabrication, Vol. 3, 034102, 2011.
[4] F. Urciuolo, C. Casale, G. Imparato and P. A. Netti, “Bioengineered Skin Substitutes_the Role of Extracellular Matrix and Vascularization in the Healing of Deep Wounds”, Journal of Clinical Medicine, Vol. 8, 2083, 2019.
[5] M. A. Skylar-Scott, J. Mueller, C. W. Visser, J. A. Lewis, “Voxelated Soft Matter Via Multimaterial Multinozzle 3D Printing”, Natural, Vol. 575, pp. 330-335, 2019.
[6] F. Liravi, E. Toyserkani, “A Hybrid Additive Manufacturing Method for The Fabrication of Silicone Bio-Structures: 3D Printing Optimization and Surface Characterization”, Materials and Design, Vol. 138, pp. 46-61, 2018.
[7] P. Gangatirkar, P. F. Sophie, A. Li, R. Rossi and P. Kaur, “Establishment of 3D Organotypic Cultures Using Human Neonatal Epidermal Cells”, Nature Protocols, Vol. 2, pp. 178-186, 2007.
[8] B. S. Kim, J. S. Lee, G. Gao and D. W. Cho, “Direct 3D Cell-Printing of Human Skin with Functional Transwell System”, Biofabrication, Vol. 9, 025034, 2017.
[9] M. Y. Yeh, J. Y. Zhao, Y. R. Hsieh, J. H. Lin, F. Y. Chen, R. D. Chakravarthy, P. C. Chung, H. C. Lin and S. C. Hung, “Reverse Thermo-Responsive Hydrogels Prepared from Pluronic F127 and Gelatin Composite Materials”, RSC Advance, Vol. 7, pp. 21252-21257, 2017.
[10] I. T. Ozbolat, H. Chen and Y. Yu, “Development of ‘Multi-Arm Bioprinter’ for Hybrid Biofabrication of Tissue Engineering Constructs”, Robotics and Computer-Integrated Manufacturing, Vol. 30, pp. 295-304, 2014.
[11] K. K. Moncal, V. Ozbolat, P. Datta, D. N. Heo and I. T. Ozbolat, “Thermally-Controlled Extrusion-Based Bioprinting of Collagen”, Journal of Materials Science-Materials in Medicine, Vol. 30, 55, 2019.
[12] J. H. Shim, J. S. Lee, J. Y. Kim and D. W. Cho, “Bioprinting of A Mechanically Enhanced Three-Dimensional Dual Cell-Laden Construct for Osteochondral Tissue Engineering Using A Multi-Head Tissue/Organ Building System”, Journal of Micromechanics and Microengineering, Vol. 22, 085014, 2012.
[13] D. Choudhury, S. Anand and M. W. Naing, “The Arrival of Commercial Bioprinters - Towards 3D Bioprinting Revolution!”, International Journal of Bioprinting, Vol. 4, 2018.
[14] CELLINK:System / Bioprinting / Bio 〖X6〗^TM, Available at: https://www.cellink.com/global/bioprinting/bio-x6/
[15] EnvisionTEC:3D Bioplotter Manufacturer Series Technical Data, Available at:https://envisiontec.com/3d-printers/3d-bioplotter/manufacturer-series/#
[16] RegenHU Biosystem Architects:3DDiscovery™ Evolution, Available at:https://www.regenhu.com/3d-bioprinters#3ddiscovery-evolution
[17] Regemat:BIO V1 Technology, Available at:https://www.regemat3d.com/en/technologies
[18] Aether:Aether1 specifications, Available at:https://discoveraether.com/
[19] Y. Du, J. L. Guo, J. Wang, A. G. Mikos and S. Zhang, “Hierarchically Designed Bone Scaffolds: From Internal Cues to External Stimuli”, Biomaterials, Vol. 218, 119334, 2019.
[20] S. Pina, V. P. Ribeiro, C. F. Marques, F. R. Maia, T. H. Silva, R. L. Reis and J. M. Oliveira, “Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications”, Materials, Vol. 12, 1824, 2019.
[21] A. Eltom, G. Zhong and A. Muhammad, “Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review”, Advances in Materials Science and Engineering, Vol. 2019, 3429527, 2019.
[22] A. Alghuwainem, A. T. Alshareeda and B. Alsowayan, “Scaffold-Free 3-D Cell Sheet Technique Bridges the Gap between 2-D Cell Culture and Animal Models”, International Journal of Molecular Sciences, Vol. 20, 4926, 2019.
[23] Q. L. Loh and C. Choong, “Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size”, Tissue Engineering Part B-Reviews, Vol. 19, pp. 485-502, 2012.
[24] M. Mabrouk, H. H. Beherei and D. B. Das, “Recent Progress in The Fabrication Techniques of 3D Scaffolds for Tissue Engineering”, Materials Science & Engineering C-Materials for Biological Applications, Vol. 110, 110716, 2020.
[25] J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf and M. Spitzbart, “Photopolymers with Tunable Mechanical Properties Processed by Laser-Based High-Resolution Stereolithography”, Journal of Micromechanics and Microengineering, Vol. 18, 125014, 2008.
[26] S. M. Bittner, J. L. Guo, A. Melchiorri and A. G. Mikos, “Three-Dimensional Printing of Multilayered Tissue Engineering Scaffolds”, Materials Today, Vol. 21, pp. 861-874, 2018.
[27] S. H. Park, D. Y. Yang and K. S. Lee, “Two-Photon Stereolithography for Realizing Ultraprecise Three-Dimensional Nano/Microdevices”, Laser & Photonics Reviews, Vol. 3, pp. 1-11, 2009.
[28] A. Selimis, V. Mironov and M. Farsari, “Direct Laser Writing: Principles and Materials for Scaffold 3D Printing”, Microelectronic Engineering, Vol. 132, pp. 83-89, 2014.
[29] X. Wang, Z. Wei, C. Z. Baysah, M. Zheng and J. Xing, “Biomaterial-Based Microstructures Fabricated by Two-Photon Polymerization Microfabrication Technology”, RSC Advance, Vol. 9, pp. 34472-34480, 2019.
[30] D. T. Pham, S. Dimov and F. Lacan, “Selective Laser Sintering: Applications and Technological Capabilities”, Manufacture, Vol. 213, pp. 435-449, 1999.
[31] F. E. Wiria, K. F. Leong, C. K. Chua and Y. Liu, “Poly-Epsilon-Caprolactone/Hydroxyapatite for Tissue Engineering Scaffold Fabrication Via Selective Laser Sintering”, Acta Biomaterialia, Vol. 3, pp. 1-12, 2007.
[32] I. Zein, D. W. Hutmacher, K. C. Tan and S. H. Teoh, “Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications”, Biomaterials, Vol. 23, pp. 1169-1185, 2002.
[33] T. N. A. T. Rahim, A. M. Abdullah and H. M. Akil, “Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites”, Polymer Reviews, Vol. 59, pp. 589-624, 2019.
[34] Z. Xiong, Y. Yan, S. Wang, R. Zhang and C. Zhang, “Fabrication of Porous Scaffolds for Bone Tissue Engineering Via Low-Temperature Deposition”, Scripta Materialia, Vol. 46, pp. 771-776, 2002.
[35] L. Liu, Z. Xiong, Y. Yan, R. Zhang, X. Wang and L. Jin, “Multinozzle Low-Temperature Deposition System for Construction of Gradient Tissue Engineering Scaffolds”, Journal of Biomedical Materials Research Part B-Applied Biomaterials, Vol. 88, pp. 254-263, 2009.
[36] L. T. Ozbolat, “3D Bioprinting Fundamentals, Principles and Applications”, 2016.
[37] G. Gao, B. S. Kim, J. Jang and D. W. Cho, “Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication”, Acs Biomaterials Science & Engineering, Vol. 5, pp. 1150-1169, 2019.
[38] S. B. Bammesberger, S. Kartmann, L. Yanguy, D. Liang, K. Mutschler, A. Ernst, R. Zengerle and P. Koltay, “A Low-Cost, Normally Closed, Solenoid Valve for Non-Contact Dispensing in the Sub-μL Range”, Micronachines, Vol. 4, pp. 9-21, 2013.
[39] H. Gudupati, M. Dey and I. Ozbolat, “A Comprehensive Review on Droplet-based Bioprinting: Past, Present and Future”, Biomaterials, Vol. 102, pp. 20-42, 2016.
[40] U. Demirci, “Acoustic Picoliter Droplets for Emerging Applications in Semiconductor Industry and Biotechnology”, Journal of Microelectromechanical Systems, Vol. 15, pp. 957-966, 2006.
[41] U. Demirci and G. Montesano, “Single Cell Epitaxy by Acoustic Picolitre Droplets”, Lab on a Chip, Vol. 7, pp. 1139-1145, 2007.
[42] C. B. Arnold, P. Serra and A. Piqué, “Laser Direct-Write Techniques for Printing of Complex Materials”, MRS Bulletin, Vol. 32, pp. 23-31, 2007.
[43] C. Mandrycky, Z. Wang, K. Kim and D. H. Kim, “3D Bioprinting for Engineering Complex Tissues”, Biotechnology Advances, Vol. 34, pp. 422-434, 2016.
[44] I. Donderwinkel, J. C. M. V. Hest and N. R. Cameron, “Bio-Inks for 3D Bioprinting: Recent Advances and Future Prospects”, Polymer Chemistry, Vol. 8, pp. 4451-4471, 2017.
[45] S. Derakhshanfar, R. Mbeleck, K. Xu, X. Zhang, W. Zhong and M. Xing, “3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances”, Bioactive Materials, Vol. 3, pp. 144-156, 2018.
[46] D. Williams, P. Thayer, H. Martinez, E. Gatenholm and A. Khademhosseini, “A Perspective on The Physical, Mechanical and Biological Specifications of Bioinks and The Development of Functional Tissues in 3D Bioprinting”, Bioprinting, Vol. 9, pp. 19-36, 2018.
[47] M. Hospodiuk, M. Dey, D. Sosnoski and I. T. Ozbolat, “The Bioink: A Comprehensive Review on Bioprintable Materials”, Biotechnology Advances, Vol. 35, pp. 217-239, 2017.
[48] I. Matai, G. Kaur, A. Seyedsalehi, A. McClinton and C. T. Laurencin, “Progress in 3D Bioprinting Technology for Tissue/Organ Regenerative Engineering”, Biomaterials, Vol. 226, 119536, 2020.
[49] 洪承暉,「使用微型閥並具備自動平台校正功能之三維生物列印機開發」,國立中央大學,碩士論文,民國107年。
[50] ATOM 3D Printer : ATOM support , Available at : https://atom3dp.squarespace.com/autoleveling-tw
[51] M. D. Guerra and R. T. Coelho, “Development of A Low Cost Touch Trigger Probe for CNC Lathes”, Journal of Materials Processing Technology, Vol. 179, pp. 117-123, 2006.
[52] L. S. Yap and M. C. Yang, “Evaluation of Hydrogel Composing of Pluronic F127 and Carboxymethyl Hexanoyl Chitosan as Injectable Scaffold for Tissue Engineering Applications”, Colloids and Surfaces B: Biointerfaces, Vol. 146, pp. 204-211, 2016.
電子全文 電子全文(網際網路公開日期:20250901)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔