(3.238.98.214) 您好!臺灣時間:2021/05/08 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李悅揚
研究生(外文):Yueh-Yang Lee
論文名稱:以表面修飾對微流道做A-Beta檢測分析之研究
論文名稱(外文):The Study of A-Beta Aggregation Analysis in Microfluidics with Surface Modification
指導教授:曹嘉文
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:73
中文關鍵詞:阿茲海默氏症表面修飾微流道A-beta聚集
相關次數:
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文以研究阿茲海默症為出發點,因為腦脊液的異常流動造成澱粉樣蛋白Aβ_42聚集導致阿茲海默疾病,全球數千萬老年人因此病在身,針對此疾病引起極大的關注。將微流道技術與生醫研究做結合,利用Polydimethylsiloxane把曝光微影製程來製作模型進行翻模,本身Polydimethylsiloxane為疏水性,透過將不同類型的微流道進行表面修飾,使表面改質達到親水性,能透過物理吸附提高蛋白沉澱效果,經由人造仿生流速結合Aβ的流動,進行傳遞,透過檢測觀察表面的變化,發現表面進行表面修飾後使Aβ抑制劑和Aβ蛋白起著接合作用,並提高了澱粉樣蛋白β留在組織上,分析不同微流道對聚集之影響。另外,使用了創新的表面修飾方法提高官能團化反應,也透過簡單的檢測儀器驗證表面修飾的存在。本論文主要是分析柱狀與平滑微流道的吸附差異,因為在柱狀微流通道中表面積減小,但接觸面積增加,使蛋白分子接觸提升,更能吸附在微流道內部。
In this study, takes the Alzheimer's disease as a starting point, because a abnormal flow of cerebrospinal fluid causes amyloid beta to cause Alzheimer's disease, which causes tens of millions of elderly people around the world to become get sick, it is of great concern. Combining microfluidic technology with biomedical techno-logy, using Polydimethylsiloxane to make a model with lithography process to rolling over, polydimethylsiloxane itself for hydrophobic, through the different types of microchannel with surface modification, so that surface modification to achieve hydrophilic, can improve the protein aggregat-ion effect by physical adsorption. Throu-gh the flow of artificial flow rate binding A-beta, use the instrument to detect and observe the surface condition, found that the surface modification of the surface to make A-beta inhibitors and A-beta protein have a joint effect, and improve the amyloid beta leave on the micro-channel, analyze the effects of different microchannel on aggregation.
In addition, the surface modification method integrate the microfluidic sys-tem to improve the functional group reaction. This study mainly analyzes the adsorption difference between column and smooth microchannel, because the surface area of the column is reduced, and the contact area increases, that A- beta protein contacts is enhanced, it can be more adsorbed inside the micro-channel.
摘要 V
Abstract VI
誌謝 VII
目錄 VIII
圖目錄 X
表目錄 XIII
一、 前言 1
1.1 阿茲海默氏症與A-beta漾蛋白 1
1.2 微流道應用於阿茲海默症中的檢測 4
1.3 表面修飾對A-beta之影響 5
1.3.1. 物理修飾法 6
1.3.2. 化學修飾法 8
1.4 研究動機 10
二、 實驗設計與架構 11
2.1 微流道材料與表面修飾藥品 11
2.1.1 微流道設計 11
2.1.2 微流道製程 12
2.2 實驗方法 13
2.2.1 PDMS表面修飾步驟/官能團化反應 13
2.2.2 表面修飾實驗檢驗 14
2.2.3 螢光強度分析檢驗 17
三、 結果分析與討論 19
3.1 表面修飾之概念 19
3.2 表面修飾過程驗證之影響 20
3.2.1 平滑PDMS表面對於修飾之影響 20
3.2.2 不同微流道對於修飾之影響 32
3.3 Aβ聚集效果之分析 40
3.3.1 不同微流道未修飾及修飾後之Aβ聚集影響 42
3.3.2 不同微流道做表面修飾之Aβ聚集差異 44
3.4 流速對A-beta聚集效果之影響 45
四、 結論 48
未來展望 49
參考文獻 50
附錄 52
1. Kemp, P., et al., Alzheimer’s disease: differences in technetium-99m HMPAO SPECT scan findings between early onset and late onset dementia. Journal of Neurology, Neurosurgery & Psychiatry, 2003. 74(6): p. 715-719.
2. Alzheimer, A., The discovery of Alzheimer's disease. Dialogues Clin Neuroscience, 1906.
3. Berry, B.J., et al., Physiological Aβ concentrations produce a more biomimetic representation of the Alzheimer’s Disease phenotype in iPSC derived human neurons. ACS chemical neuroscience, 2018. 9(7): p. 1693-1701.
4. Vigo‐Pelfrey, C., et al., Rapid Communication: Characterization of β‐Amyloid Peptide from Human Cerebrospinal Fluid. Journal of neurochemistry, 1993. 61(5): p. 1965-1968.
5. Motter, n., et al., Reduction of β‐amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer's disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 1995. 38(4): p. 643-648.
6. Heneka, M.T., et al., Neuroinflammation in Alzheimer's disease. The Lancet Neurology, 2015. 14(4): p. 388-405.
7. Brown, P., et al., Molecular mechanisms of cerebrospinal fluid production. Neuroscience, 2004. 129(4): p. 955-968.
8. Chen, G.-f., et al., Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 2017. 38(9): p. 1205-1235.
9. Gospodarczyk, W. and M. Kozak, Microchip Circulation Drastically Accelerates Amyloid Aggregation of 1–42 β-amyloid Peptide from Felis catus. ACS chemical neuroscience, 2017. 8(11): p. 2558-2567.
10. Lun, M.P., E.S. Monuki, and M.K. Lehtinen, Development and functions of the choroid plexus–cerebrospinal fluid system. Nature Reviews Neuroscience, 2015. 16(8): p. 445-457.
11. Ho, C.M. and Y.C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics, 1998. 30: p. 579-612.
12. Lee, J.S. and C.B. Park, Microfluidic dissociation and clearance of Alzheimer’s β-amyloid aggregates. Biomaterials, 2010. 31(26): p. 6789-6795.
13. Devadhasan, J.P., S. Kim, and J. An, Fish-on-a-chip: a sensitive detection microfluidic system for alzheimer's disease. Journal of biomedical science, 2011. 18(1): p. 33.
14. Ren, Y., A. Kunze, and P. Renaud, Compartmentalized microfluidics for in vitro Alzheimer’s disease studies, in Microfluidic and compartmentalized platforms for neurobiological research. 2015, Springer. p. 197-215.
15. Mohamadi, R.M., et al., An integrated microfluidic chip for immunocapture, preconcentration and separation of β-amyloid peptides. Biomicrofluidics, 2015. 9(5): p. 054117.
16. Mai, T.D., et al., Single-step immunoassays and microfluidic droplet operation: towards a versatile approach for detection of amyloid-β peptide-based biomarkers of Alzheimer’s disease. Sensors and Actuators B: Chemical, 2018. 255: p. 2126-2135.
17. Gokaltun, A., et al., Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. Technology, 2017. 5(01): p. 1-12.
18. Qiu, J., P. Hu, and R. Liang, Separation and simultaneous determination of uric acid and ascorbic acid on a dynamically modified poly (dimethylsiloxane) microchip. Analytical Sciences, 2007. 23(12): p. 1409-1414.
19. Sung, W.-C., et al., Functionalized 3D-hydrogel plugs covalently patterned inside hydrophilic poly (dimethylsiloxane) microchannels for flow-through immunoassays. Analytical chemistry, 2009. 81(19): p. 7967-7973.
20. Lee, S. and J. Vörös, An aqueous-based surface modification of poly (dimethylsiloxane) with poly (ethylene glycol) to prevent biofouling. Langmuir, 2005. 21(25): p. 11957-11962.
21. Xu, J. and K.K. Gleason, Conformal, amine-functionalized thin films by initiated chemical vapor deposition (iCVD) for hydrolytically stable microfluidic devices. Chemistry of Materials, 2010. 22(5): p. 1732-1738.
22. Xia, H., et al., Microfluidic based immunosensor for detection and purification of carbonylated proteins. Biomedical microdevices, 2013. 15(3): p. 519-530.
23. Gospodarczyk, W. and M. Kozak, The severe impact of in vivo-like microfluidic flow and the influence of gemini surfactants on amyloid aggregation of hen egg white lysozyme. RSC advances, 2017. 7(18): p. 10973-10984.
電子全文 電子全文(網際網路公開日期:20250824)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔