(3.230.154.160) 您好!臺灣時間:2021/05/07 17:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:董新文
研究生(外文):Hsin-Wen Dong
論文名稱:複合式物理力的生物反應器自動化與控制設計
論文名稱(外文):Multiplex physical stress bioreactor control and automation
指導教授:曹嘉文
指導教授(外文):Chia-Wen Tsao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:66
中文關鍵詞:生物反應器控制自動化
外文關鍵詞:bioreactorcontrolautomation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在低成本、易製備的基礎上探討生物反應器的製程與控制。在細胞培養上,我們常會使用Lab-on-chip創造仿生環境來在體外培養細胞以及觀察。大多數進行生物反應器的研究流於小尺度的觀察,而卻捨棄了批量生產細胞的可能性。同時,大量的微製程以及模擬生物活動所需的電路控制也對生物實驗者產生裝置製備方面的負擔。所以,適當的放大生物反應器的尺度使其兼顧觀察、採集等特性,仍然是一個問題。通常大多數的學者並未著墨於放大尺度以大量生產、降低成本、降低實驗者製造能力,因此本論文會就此方面進行相關探討。
本文針對了一種進行機械與電刺激的生物反應器進行了改進,使它能夠讓使用者自主簡易的生產、組裝,而後能夠輕易地學習調整參數靈活地進行實驗。我們利用CNC铣床與鑽床進行流道層的製備,搭配PPy (Polypyrrole, 聚吡咯) coating PDMS材質的薄膜提供導電性用以電刺激細胞。再將拋棄式導電薄膜黏附於流道層上,利用抽氣的方式提供拉伸用以機械刺激細胞。同時,我們製作了一個整合電極的外殼固定整個裝置從而改善接合問題,以及提升可靠度。此外,還有一個用於自動化控制的控制盒。控制盒將用於以電磁閥控制抽氣幫浦調整對細胞的機械拉伸刺激頻率,以及控制固態繼電器產生脈衝訊號對細胞進行電刺激,此兩者都能對細胞在分化上產生了顯著的幫助。並且,複合刺激也證實了兩者可相輔相成,獲取更大的效益。而導入自動化控制對於使用者能夠更好的控制實驗參數,而在往後也提升了裝置的擴充性。
This thesis aims to discuss the process and control of bioreactor based on low cost and easy preparation. In cell-culture, we often use Lab-on-chip to culture cells in vitro. Most bioreactor research has focused on small-scale observations, but has abandoned the possibility of mass-culturing cells. At the same time, a lot of microfabrication processes and the circuit control required to simulate biological activities also need device preparation ability of biological experiment operators. Therefore, how to make the experiment operators easy to make is still a problem. Most scholars usually do not focus on low cost and reduce the experimenter's manufacturing ability, so this paper will discuss this aspect.
In this thesis, we improved a bioreactor for mechanical and electrical stimulation, so that it can allow users to produce and assemble it easily, and then they can easily learn and adjust parameters to experiment flexibly. We use a CNC milling machine and a drilling machine to prepare the flow channel layer, and a film made of PPy coating PDMS material provides conductivity to electrically stimulate cells. Then the film is bonded on the fluid layer, and the stretching is provided by pump to mechanically stimulate the cells. At the same time, we made a shell with electrodes to fix the whole device to avoid liquid leak and replace the function of traditional culture dishes. In addition, there is a control box for electromechanical control. The control box will be used to control the pump with an electromagnetic valve to adjust the mechanical stretch to stimulate the cells, and to use a pulse signal made by SSR (solid-state-relay) to electrical stimulate the cells. Moreover, the complex stimulation also confirmed that the two can help each other and gain greater benefits. The digital control of the device also allows they to adjust their own parameters needed, and it also remains device’s expandability in the future.
目錄
摘要 v
Abstract vi
致謝 viii
目錄 ix
圖目錄 xi
第一章 前言 1
1-1 生物反應器與組織工程 1
1-1-1 微觀的生物反應器 1
1-1-2 巨觀的生物反應器 3
1-2 複合刺激對細胞的影響 5
1-2-1 脈衝電刺激 6
1-2-2 氣動式機械拉伸刺激 7
1-3 生物反應器的商業化 9
1-4 研究動機 10
第二章 實驗材料設備與方法 12
2-1 實驗材料與設備 12
2-2 實驗方法 13
2-2-1 培養區生物反應器的設計、組裝 13
2-2-2 控制區的配置、程式 16
2-2-3 脈衝訊號的量測 17
2-2-4 微接觸印刷與拉伸量測試 18
2-2-5 密封性測試 18
2-2-6 分化測試 19
2-2-7 電刺激對細胞的影響 20
第三章 結果與討論 21
3-1 脈衝電刺激與氣動式機械拉伸刺激的複合控制裝置 21
3-1-1 氣動式機械拉伸刺激控制的設計 21
3-1-2 脈衝電刺激的設計 23
3-1-3 脈衝電刺激的驗證 32
3-2 機械拉伸刺激 33
3-2-1 裝置的機械力夾持外殼 33
3-2-2 以流道深度控制拉伸量 38
3-2-3 拉伸量的驗證 40
3-3 複合刺激對細胞之影響 47
第四章 結論 50
參考文獻 52
參考文獻

1 Agrawal, G., Aung, A., and Varghese, S.: ‘Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury’, Lab Chip, 2017, 17, (20), pp. 3447-3461
2 Esch, E.W., Bahinski, A., and Huh, D.: ‘Organs-on-chips at the frontiers of drug discovery’, Nature Reviews Drug Discovery, 2015, 14, (4), pp. 248-260
3 Sasserath, T., Rumsey, J.W., McAleer, C.W., Bridges, L.R., Long, C.J., Elbrecht, D., Schuler, F., Roth, A., Bertinetti-LaPatki, C., Shuler, M.L., and Hickman, J.J.: ‘Differential Monocyte Actuation in a Three-Organ Functional Innate Immune System-on-a-Chip’, Advanced Science
4 Dennis, R.G., Smith, B., Philp, A., Donnelly, K., and Baar, K.: ‘Bioreactors for Guiding Muscle Tissue Growth and Development’, in Kasper, C., VanGriensven, M., and Portner, R. (Eds.): ‘Bioreactor Systems for Tissue Engineering’ (2009), pp. 39-79
5 McDonald, J.C., Duffy, D.C., Anderson, J.R., Chiu, D.T., Wu, H.K., Schueller, O.J.A., and Whitesides, G.M.: ‘Fabrication of microfluidic systems in poly(dimethylsiloxane)’, Electrophoresis, 2000, 21, (1), pp. 27-40
6 Hossain, M., and Rahman, T.: ‘Low Cost Micro Milling Machine for Prototyping Plastic Microfluidic Devices’, in Editor (Ed.)^(Eds.): ‘Book Low Cost Micro Milling Machine for Prototyping Plastic Microfluidic Devices’ (2018, edn.), pp.
7 Mehta, G., Mehta, K., Sud, D., Song, J.W., Bersano-Begey, T., Futai, N., Heo, Y.S., Mycek, M.A., Linderman, J.J., and Takayama, S.: ‘Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture’, Biomedical Microdevices, 2007, 9, (2), pp. 123-134
8 Cong, Y., Han, X.H., Wang, Y.P., Chen, Z.Z., Lu, Y., Liu, T.J., Wu, Z.Z., Jin, Y., Luo, Y., and Zhang, X.L.: ‘Drug Toxicity Evaluation Based on Organ-on-a-Chip Technology: A Review’, Micromachines, 2020, 11, (4)
9 Yang, J.W., Shen, Y.C., Lin, K.C., Cheng, S.J., Chen, S.L., Chen, C.Y., Kumar, P.V., Lin, S.F., Lu, H.E., and Chen, G.Y.: ‘Organ-on-a-Chip: Opportunities for Assessing the Toxicity of Particulate Matter’, Front. Bioeng. Biotechnol., 2020, 8, pp. 13
10 Sullenbarger, B., Bahng, J.H., Gruner, R., Kotov, N., and Lasky, L.C.: ‘Prolonged continuous in vitro human platelet production using three-dimensional scaffolds’, Experimental Hematology, 2009, 37, (1), pp. 101-110
11 Blin, A., Le Goff, A., Magniez, A., Poirault-Chassac, S., Teste, B., Sicot, G., Nguyen, K.A., Hamdi, F.S., Reyssat, M., and Baruch, D.: ‘Microfluidic model of the platelet-generating organ: beyond bone marrow biomimetics’, Scientific Reports, 2016, 6
12 Mobini, S., Leppik, L., and Barker, J.H.: ‘Direct current electrical stimulation chamber for treating cells in vitro’, Biotechniques, 2016, 60, (2), pp. 95-98
13 Kluge, J.A., Leisk, G.G., Cardwell, R.D., Fernandes, A.P., House, M., Ward, A., Dorfmann, A.L., and Kaplan, D.L.: ‘Bioreactor System Using Noninvasive Imaging and Mechanical Stretch for Biomaterial Screening’, Annals of Biomedical Engineering, 2011, 39, (5), pp. 1390-1402
14 Lu, L., Mende, M., Yang, X.G., Korber, H.F., Schnittler, H.J., Weinert, S., Heubach, J., Werner, C., and Ravens, U.: ‘Design and Validation of a Bioreactor for Simulating the Cardiac Niche: A System Incorporating Cyclic Stretch, Electrical Stimulation, and Constant Perfusion’, Tissue Engineering Part A, 2013, 19, (3-4), pp. 403-414
15 Mohamed, M.A., Islas, J.F., Schwartz, R.J., and Birla, R.K.: ‘Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications’, Asaio Journal, 2017, 63, (3), pp. 333-341
16 Hosseini, V., Gantenbein, S., Vizcarra, I.A., Schoen, I., and Vogel, V.: ‘Stretchable Silver Nanowire Microelectrodes for Combined Mechanical and Electrical Stimulation of Cells’, Advanced Healthcare Materials, 2016, 5, (16), pp. 2045-2054
17 Zheng, W.F., Jiang, B., Wang, D., Zhang, W., Wang, Z., and Jiang, X.Y.: ‘A microfluidic flow-stretch chip for investigating blood vessel biomechanics’, Lab Chip, 2012, 12, (18), pp. 3441-3450
18 Lotun science Co., L.: ‘Cell Stress 3D&4D Dynamic Culture System’, 2017
19 IonOptix: ‘Culture Pacing System’, 2019
20 陳彥齊: ‘循環拉伸與電刺激之協同作用對肌肉分化的影響’, 國立中央大學, 2019
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔