(3.237.48.165) 您好!臺灣時間:2021/05/09 12:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:夏勇騎
研究生(外文):Yung-Chi Hsia
論文名稱:車用雙相鋼板的沖壓成形的實驗與分析
指導教授:施登士
指導教授(外文):Teng-Shih Shih
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:103
中文關鍵詞:雙相鋼成型極限圖回彈效應V型彎曲U型彎曲三點鈑彎
外文關鍵詞:Dual phase steelForming limit diagramSpringback effectV-BendingU-Bending3 point bending
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來全球環保意識抬頭,為了減少溫室氣體的排放,並提昇燃油效率,汽車減重為各大汽車廠努力的目標,世界各國也將碳排放做為主要環保指標;首當其衝的就是車輛油耗表現,從而使得高強度鋼材(Advance High Strength Steel) 的使用增加;而其中使用量最為廣泛的就是雙相鋼(Dual Phase Steel)。
在車輛零件生產過程時會有材料會有回彈效應的現象產生;這也是汽車產業目前對於此種材料在進行生產時會遇到的難題;特別在零件尺寸的成型精確度上。然而在沖壓成型中,回彈為無法避免的問題,且隨著使用之材料的強度愈高,回彈現象愈嚴重,故本研究採用三點鈑彎、U 型彎曲以及V型彎曲成型實驗來了解回彈之特性,選用1mm厚度的薄板雙相鋼DP590、雙相鋼DP780、雙相鋼DP980和雙相鋼DP1180四種材料來了解高強度鋼板在回彈現象的差異性。
本研究使用油壓式壓床與曲柄式沖壓機來探討先進高張力鋼在不同應變率下之成型特性及不同應變率與板件破裂之關係,並希望從中探討是否以不同模具尺寸、模具特性來抑制回彈之可行性。並利用有限元素法軟體模擬高強度鋼板回彈之行為,驗證CAE 模擬回彈之正確性。為了提升CAE 模擬回彈之正確性,本研究將探討不同應變程度與回彈角度的關係,再將其應用於基本造型沖壓成型CAE 模擬分析技術上,包括V 型彎曲成型、三點鈑彎及U 型彎曲。
雙相鋼因為材料變形時相變態的緣故會強化,本研究針對這個強化現象分析板材成型時雙相鋼的回彈角度變化,以及改變製程參數對回彈角度的影響。
In recent years, the awareness of global environmental protection.In order to cut greenhouse gas emissions, increase the fuel efficiency of gasoline. Losing weight of automobile is the goal of each automotive company in the world. Carbon emissions becomes major environmental index for each country in the world. Thus increased usage of advanced high strength steel. However, there is dual phase steel is the most used material.
In the production process of vehicle parts, there will be a phenomenon that the material will have a springback effect, this is also the problem that the automotive industry currently encounters in the production of advanced high strength steel, especially in the accuracy of forming the part size. However, in stamping forming, springback is an unavoidable problem, and as the strength of the material used is higher, the springback phenomenon becomes more serious, so this study uses three-point sheet bending, U-bending and V-bending forming experiments to understand the characteristics of springback.After all, we choose four materials of 1mm thickness thin-plate dual-phase steel DP590, dual-phase steel DP780, dual-phase steel DP980, and dual-phase steel DP1180.
In this study, hydraulic presses and crank presses were used to discuss the forming characteristics of advanced high strength steel under different strain rate and the relationship between different strain rate and plate breakage. We hope to discuss the possibility, whether to use different die size and die characteristics to suppressing the of springback. And using the finite element method software to simulate advanced high strength steel springback to verify the correctness of CAE simulated springback. In order to improve the accuracy of CAE simulation springback, this study will explore the relationship between the degree of same
strain and springback angle, and then apply it to the basic analysis of CAE simulation analysis technology of stamping forming, including V-shaped bending, three-point sheet bending and U-shaped bend.
The dual-phase steel will be strengthened due to the phase transformation when the material is deformed. In this study, the springback angle of the dual-phase steel during sheet forming and the effect of changing the process parameters on the springback angle are analyzed for this strengthening phenomenon.
中文摘要 i
英文摘要 ii
誌  謝 iv
目  錄 v
圖 目 錄 viii
表 目 錄 xiii
一、 緒論 1
1-1 研究動機 3
1-2 高強度鋼概述 3
1-2-1 雙相鋼的優點與特性 4
1-2-2 雙相鋼材製造 5
1-2-3 雙相鋼的製程 5
1-2-4 雙相鋼的機械特性與化學成分 6
1-2-5 雙相鋼的粒度分析 7
1-2-6 雙相鋼的腐蝕金相 7
1-2-7 雙相鋼的晶粒大小 8
1-2-8 雙相鋼的退火 8
1-2-9 麻田散鐵的誘發成因 9
1-2-10 拉伸特性與應變速率 9
1-3 成型極限圖(FLD) 11
1-3-1 工程應變與自然應變 14
1-3-2 成型極限曲線(FLC)-Marginal area 14
1-3-3 成型極限曲線(FLC)的建立 16
1-4 回彈效應 19
1-4-1 V型彎曲回彈機制 20
1-4-2 回彈試驗模擬 21
1-4-3 等效應力與等效應變 22
1-4-4 最大主應力(Maxinmum principal stress) 23
二、 實驗方法與步驟 24
2-1 實驗材料 24
2-2 實驗設備 24
2-3 實驗步驟 26
2-3-1 材料準備 26
2-3-2 顆粒數分析 26
2-3-3 腐蝕觀察量測 26
2-3-4 維克氏硬度實驗 26
2-4 拉伸試驗 26
2-5 FLD成型極限試驗 27
2-5-1 網格腐蝕 28
2-5-2 成型極限實驗 31
2-6 雙相鋼成型試驗:三點板彎 35
2-6-1 雙相鋼成型試驗:三點板彎沖頭尺寸R6 35
2-6-2 雙相鋼成型試驗:三點板彎沖頭尺寸R16 35
2-6-3 雙相鋼成型試驗:圓柱體成型實驗 36
2-7 雙相鋼成型試驗:V形板彎實驗 37
2-7-1 表面粗糙度量測 38
2-7-2 氮化鈦鍍膜 39
2-8 彈回實驗模擬 40
三、 結果與討論-金相分析 41
3-1 材料淨度觀察分析 41
3-2 材料表面硬度分析 42
3-3 金相腐蝕觀察 43
3-4 拉伸試驗結果 44
四、 結果與討論-成型極限分析 46
4-1 成型後試片(DP590、DP780、DP980、DP1180) 46
4-2 成型極限試驗結果與討論 49
4-3 成型極限模擬分析(剷雪機 press brake:*web sourcee) 53
五、 結果與討論-三點板彎實驗 64
5-1 鋼板成型實驗模擬:三點板彎 64
5-2 鋼板成型實驗模擬:圓柱成型實驗 64
5-3 鋼板成型實驗:三點板彎 65
5-4 圓柱成型模實驗-放置時間對彈回角度的關係 67
六、 結果與討論-V型彎曲實驗 68
6-1 V型彎曲實驗-實驗模擬 68
6-2 V型彎曲實驗-油壓式沖床與曲炳式沖床對彈回角度的影響 72
6-3 V型彎曲實驗-不同表面粗糙度及模具形狀對彈回角度的影響 73
6-4 V型彎曲實驗-不同模具形狀對表面硬度影響 74
6-5 V型彎曲實驗-不同模具形狀對微結構的影響 75
6-6 V型彎曲實驗-成型影響的綜論 79
6-7 實際產品彈回分析(剷雪機煞車press brake) 79
七、 結論與建議 81
八、 參考文獻 82
〔1〕 WorldAutoSteel:AHSS Application Guidelines 6.0.。 2017年,取自https://www.worldautosteel.org/projects/advanced-high-strength-steel-application-guidelines/。
〔2〕 WorldAutoSteel:ULSAB Overview Report.。 2015年,取自https://www.worldautosteel.org/projects/advanced-high-strength-steel-application-guidelines/。
〔3〕 Liu, S., et al., "DP600 dual phase steel thermo-elasto-plastic constitutive model considering strain rate and temperature influence on FEM residual stress analysis of laser welding.", Journal of Manufacturing Processes, Vol 35: pp. 407-419, 2018
〔4〕 Tamarelli and C.M.: AHSS 101: The Evolving Use of Advanced High-Strength Steels for Automotive Applications.。 2011,取自https://www.steel.org。
〔5〕 陳復國, et al., 「先進高強度鋼板沖壓成形之研究」,國立臺灣大學機械工程學系暨研究所,碩士論文,民國101年。
〔6〕 Kim, J., et al., "Effect of hardening laws and yield function types on spring-back simulations of dual-phase steel automotive sheets.", Metals and Materials International, Vol 12, pp. 293-305, 2006
〔7〕 BANDIVADEKAR, Z.Y.A.A.,:LIGHT-DUTY VEHICLE GREENHOUSE GAS AND FUEL ECONOMY STANDARDS.。 2017,取自https://theicct.org/publications/2017-global-update-LDV-GHG-FE-standards。
〔8〕 Peterson, G.: Vehicle Lightweighting: A Review of the Safety of Reduced Weight Passenger Cars and Light Duty Trucks.。2018年10月,取自https://theicct.org/publications/2017-global-update-LDV-GHG-FE-standards。
〔9〕 Erika Aparecida da, S., et al., “Comparison of springback effect of the dual phase steels 600 and 780 function to microstructure and mechanical properties.”,The 23rd ABCM International Congress of Mechanical Engineering.,Rio de Janeiro、Brazil,2015年12月


〔10〕 Abe, Y., et al., "Shearing of ultra-high strength steel sheets with step punch.", Procedia Manufacturing, Vol 15, pp. 597-604, 2018
〔11〕 羅培仁, 劉威良, and 謝克昌:熱沖壓硼鋼金相組成與硬度之研究.。 2014,取自https://www.yoke.net/chinese/main.asp?url=052&cid=174。
〔12〕 Gao, Q., et al., "Influence of hydrogen on formability and bendability of DP1180 steel for car body application.", IOP Conference Series: Materials Science and Engineering, Vol 159, 2016
〔13〕 K. Naoya, et al., "Tensile Behavior of Ferrite-martensite Dual Phase Steels with Nano-precipitation of Vanadium Carbides.", ISIJ International, Vol 55, pp. 1781-1790, 2015
〔14〕 Callister, W.D. and D.G. Rethwisch, Materials science and engineering : an introduction., John Wiley & Sons, Inc., United States of America, 2014.
〔15〕 De Moor E., et al., "Comparison of Hole Expansion Properties of Quench & Partitioned, Quench & Tempered and Austempered Steels.", SAE International, 2012
〔16〕 European Committee For Standardization:Continuously hot-dip coated steel flat products - Technical delivery conditions, in EN 10346:2009.。2009,取自http://www.hrsteels.com/。
〔17〕 voestalpine:Data sheet dual-phase high-ductility steels, in AHSS High-ductility.。2018,取自http:// www.voestalpine.com/。
〔18〕 卿家勝和沈厚發, 「冷軋雙相鋼DP800生產工藝及性能研究」,鐵釩鈦, 38, 2017。
〔19〕 康永林、李聲慈和朱國明, 「冷軋高强汽車板的高應變速率行為及纳米析出特徵」,中國金屬學會,10,1-6頁,2015。
〔20〕 Hu J., “Characterization and Modeling of Deformation, Springback, and Failure in Advanced High Strength Steels (AHSSs).”, Clemson University , Doctoral Dissertation, 2016.
〔21〕 Zhang, F., et al., “Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior.”, Materials Science and Engineering A, Vol 659: pp. 93-103, 2016


〔22〕 Taylor M.D., “Effect of microstructure on the fracture response of advanced high strength steels.”, Colorado School of Mines, Doctoral Dissertation, 2016.
〔23〕 Sakamoto, H., “Distinction between thermal and stress-induced martensitic transformations and inhomogeneity in internal stress.”, Materials Transactions Vol 43, pp. 2249-2255, 2002
〔24〕 H. Gong, et al., “Experimental investigation of the mechanical response of laser-welded dissimilar blanks from advanced- and ultra-high-strength steels.”, Materials & Design, Vol 90, pp. 1115-1123, 2016
〔25〕 D. Dong, et al., Effect of Strain Rate on Dynamic Deformation Behavior of Dp780 Steel.”, Acta Metallurgica Sinica, Vol 49, 2013
〔26〕 Q. Dai, et al., Behaviour and Mechanism of Strain Hardening for Dual Phase Steel Dp1180 under High Strain Rate Deformation.”, Acta Metallurgica Sinica, Vol 48, 2012.
〔27〕 H. Yu, Y. Guo, and X. Lai, “Rate-dependent behavior and constitutive model of DP600 steel at strain rate from 10−4 to 103s−1.”, Materials & Design, Vol 30, pp. 2501-2505, 2009.
〔28〕 Z. Marciniak, J.L. Duncan, and S.J. Hu, Second Edition, Mechanics of Sheet Metal Forming., Butterworth-Heinemann., Oxford, 2002.
〔29〕 R. Hill, “On discontinuous plastic states, with special reference to localized necking in thin sheets.”, Journal of the Mechanics and Physics of Solids, Vol 1,pp. 19-30, 1952.
〔30〕 H.W. Swift , “Plastic instability under plane stress.”, Journal of the Mechanics and Physics of Solids, Vol 1, pp. 1-18, 1952.
〔31〕 Z. Marciniak and K. Kuczyński, “Limit strains in the processes of stretch-forming sheet metal.”, Mechanics of Sheet Metal Forming, Vol 9, pp. 609-620, 1967.
〔32〕 J.W. Hutchinson and K.W. Neale, Mechanics of Sheet Metal Forming: Material Behavior and Deformation Analysis., Springer, Boston US: 1978.
〔33〕 S.P. Keeler, “Plastic instability and fracture in sheet stretched over rigid punches.”, Massachusetts Institute of Technology, Doctoral Dissertation, 1961.
〔34〕 G.M. Goodwin, “Application of strain analysis to sheet metal forming problems in the press shop.”, SAE International, 1968.
〔35〕 S. Dziallach, et al., “Sheet metal testing and flow curve determination under multiaxial conditions.”, Advanced Engineering Materials, Vol 9, pp. 987-994, 2007.
〔36〕 陳彥佑,「金屬薄板液壓膨脹實驗結合成形極限之設備研發與研究」,機械工程學系國立交通大學,碩士論文,民國101年。
〔37〕 S.F. Golovashchenko, A.J. Gillard and A.V. Mamutov, “Formability of dual phase steels in electrohydraulic forming.”, Journal of Materials Processing Technology, Vol 213, pp. 1191-1212, 2013.
〔38〕 C.L. Chow and M. Jie, “Forming limits of AL 6022 sheets with material damage consideration—theory and experimental validation.”, International Journal of Mechanical Sciences, Vol 46, pp. 99-122, 2004.
〔39〕 S.B. Kim, et al.,”Forming limit diagram of auto-body steel sheets for high-speed sheet metal forming.”, Journal of Materials Processing Technology, Vol 211, pp. 851-862, 2011.
〔40〕 Keeler, S., K. SP, and B. WG, “Relationship between laboratory material characterization and press-shop formability.”, Microalloying, Vol 75, 1975.
〔41〕 K.A. Raghavan, R. Van Kuren and H. Darlington, “Recent progress in the development of forming limit curves for automotive sheet steels.”, SAE Technical Paper, 1992.
〔42〕 D.E. Green and K.C. Black, “A visual technique to determine the forming limit for sheet materials.”, SAE Transactions, pp. 624-634, 2002
〔43〕 A.A. Konieczny, “Advanced high strength steels formability.”, American Iron and Steel Institute, 2003.
〔44〕 W. Schroeder, “Mechanics of sheet metal bending.”, Transactions of ASME, Vol 65, pp. 817–827, 1943.
〔45〕 F.J. Gardiner, “The springback of metals.”, Transactions of ASME, Vol 79, pp. 1-9, 1957.
〔46〕 J.M. Alexander, “An analysis of the plastic bending of wide plate and the effect of stretching on transverse residual stresses.”, Proceedings of the Institution of Mechanical Engineers, Vol 173, pp. 73-96, 1959.
〔47〕 B.W. Shaffer and E.E. Ungar, “Mechanics of the sheet-bending process.”, Transactions of ASME, pp. 34-40, 1960.
〔48〕 S.H. Crandall, N.C. Dahl, and E.H. Dill, “An introduction to the mechanics of solids.”, Physics Today, Vol 13, pp. 46, 1960.
〔49〕 B.M. BOTROS, “Springback in sheet metal forming after bending.”, ASME, 1967.
〔50〕 J. Wang, et al., “Springback control of sheet metal air bending process.”, Journal of Manufacturing Processes, Vol 10, pp. 21-27, 2008.
〔51〕 E.A. da Silva, et al., “A comparison between an advanced high-strength seel and a high-strength steel Due to the spring back effect.”, IOSR Journal of Mechanical and Civil Engineering, Vol 13, pp. 21-27, 2016.
〔52〕 陳復國等編著, 「先進高強度鋼板沖壓成形之研究」,行政院國家科學委員會專題研究計畫,國立臺灣大學機械工程學系暨研究所,2012。
〔53〕 S. Ján and J. Miroslav, Analytical and numerical prediction of springback in sheet metal bending.”, Journal for Technology of Plasticity, Vol 38, 2013.
〔54〕 X. Yang, et al., “Prediction of springback in air-bending of advanced high strength steel (DP780) considering Young׳s modulus variation and with a piecewise hardening function.”, International Journal of Mechanical Sciences, Vol 105,pp. 266-272, 2016.
〔55〕 H. Kim, et al., “Effects of variable elastic modulus on springback predictions in stamping advanced high-strength steels (AHSS).”, Steel Res. Int, Vol 8, pp. 628-633, 2011.
〔56〕 J. Jung, et al., “Anisotropic hardening behaviour and springback of advanced high-strength steels.”, Metals, Vol 7, 2017.
〔57〕 A.M. Cantara, et al., “Predicting elastic anisotropy of dual-phase steels based on crystal mechanics and microstructure.”, International Journal of Mechanical Sciences, Vol 151, pp. 639-649, 2019.
〔58〕 張志毅和何明雄, 應用剪刀試驗於DP980高強度鋼之Yoshida-Uemori材料模型研究. 桃園創新學報,第35期,49頁-66頁,2015年。


〔59〕 ASTM:Standard Test Methods for Tension Testing of Metallic Materials:ASTM-E8, 2019年2月14日,取自https://www.astm.org/。
〔60〕 張小千,「高強度7075-T4鋁合金之溫間成形研究」,國立中央大學,碩士論文,2014。
〔61〕 林威智,「應用微影技術於板金成形網格尺寸效應之研究」,國立成功大學,碩士論文,2002。
〔62〕 S. Chatti and N. Chtioui, “Sheet metal forming simulation using finite elastoplasticity with mixed isotropic/kinematic hardening.”, European Journal of Computational Mechanics, Vol 20, pp. 427-453, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔