(3.230.154.160) 您好!臺灣時間:2021/05/08 00:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:費安托
研究生(外文):Mohammad Tri Fitrianto
論文名稱:東台灣池上斷層於大坡國小地區的特性研究
論文名稱(外文):Characteristics of the Chihshang Fault at Tapo-elementary school area, Eastern Taiwan
指導教授:黃文正黃文正引用關係
指導教授(外文):Wen-Jeng Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:應用地質研究所
學門:自然科學學門
學類:地球科學學類
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:112
中文關鍵詞:池上斷層花東縱谷斷層活動斷層地形崖崩移
外文關鍵詞:Chihshang FaultLongitudinal Valley Faultactive faultescarpmentslumping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
池上斷層是台灣東部花東縱谷斷層系列中,其中一段活動活躍的斷層,且池上斷層在震間期以約22 mm/yr的速率抬升,前人的研究大多認為池上斷層跡在富里至萬安地區的位置與花東縱谷及海岸山脈交界處的地形崖位置吻合,沿著此地形崖處已有許多與池上斷層相關的研究,其中一個被探討已久的地方位於大坡國小,沿著此地形崖可觀察到多個近地表正在變形的證據,像是破裂的水泥牆及變形而傾斜破壞的溜滑梯,然而,根據地形崖兩側前人認為是池上斷層上盤及下盤處的兩口鑽探岩心分析,兩口岩心層序可完全對比,且層界近乎水平,並無證據顯示池上斷層通過此處,原本預期池上斷層頂端與的形崖的位置並不吻合,因此池上斷層的位置與地形崖之間的關係是個有趣且值得被探討的問題。本研究目的為釐清此地區池上主斷層的特徵,以及釐清大坡國小內近的表變形與池上斷層之間的關係,本研究利用7口鑽探資料、碳十四定年、地電阻剖面資料及傾斜儀監測資料進行分析,前人研究在大坡國小南側2公里處觀察到池上斷層有分支斷層,為了區別主斷層與分支斷層,本研究定義池上主斷層為錯移量最大的面,此位置本研究也預期會在岩心當中以及傾斜管監測資料看見相對應的證據,根據3孔鑽探岩心分析結果,本研究觀察到個別在不同深度觀察到全新世沉積物與利吉混同層攪和在一起,傾斜儀監測資料也可觀察到位於全新世沉積物及利吉混同層交界處有明顯位移量,本研究定義池上主斷層為岩心中觀察到最後一塊利吉層與全新世沉積物不連續接觸面,3孔岩心主斷層連線計算出的斷層面傾角為77度,主斷層頂端的位置與地形崖的位置並不一致。本研究亦藉由岩心分析,觀察到近地表處利吉混同層有非剪切構造的不規則構造,意味著利吉層有重新堆積的現象,此現象指示此區有崩移的機制,因此本研究推論地形崖處近地表變形受兩種機制影響;斷層錯移及崩移。
Chihshang Fault is one of the most active segments of Longitudinal Valley Fault in eastern Taiwan. The Chihshang Fault is the active fault with the significant uplift rate is up to 22 mm/yr during the inter-seismic period. The previous study stated that the trace of the Chihshang Fault corresponded with the major escarpment that struck from Fuli to Wanan. Many observations had been conducted along this major escarpment to study the Chihshang Fault. One of these locations is the Tapo ES area. Pieces of evidence of surface deformation, such as the fractured concrete wall and the tilted slide platform, can be observed along the major escarpment in this area. Two boreholes were penetrated on the hanging wall and footwall of the major escarpment, respectively. However, these boreholes observation showed the continuity of the sub-horizontal layer with less evidence of significant uplift rate in between. We suspect that the upper tip of the Chihshang Fault in this area does not correspond with the the major escarpment; yet the relation between the major scarp and the Chihshang Fault will be interesting to study. Thus, to understand this phenomenon, the aim of this research is to probe the characteristic of Chihshang Fault and the relation between the Chihshang Fault with the surface deformation at Tapo ES area. We utilized 7 boreholes cores, radiocarbon (C-14) dating, Electric Resistivity Tomography (ERT), and inclinometer monitoring to support this research. In Chinyuan, 2 km to the south from Tapo ES, the Chihshang Fault has several branch faults. In this research, to differentiate the Chihshang main fault from the Chihshang branch fault, we define the Chihshang main fault as the fault with the most slip movement, which we expect to see the evidences through the structure of the rock and the inclinometer monitoring result. From the rock core, we observe the Holocene deposits that intercalate into the Lichi mélange near the boundary of these two materials. This feature is consistently observed in three boreholes. From the inclinometer, the active displacement is observed on the boundary between the Holocene deposits and the Lichi mélange. We infer that the Chihshang main fault, in Tapo ES area, separates the Lichi mélange and the Holocene deposits layer with a dip angle of 77o which the upper tip of this main fault does not correspond with the major escarpment mentioned above. Furthermore, from the insight study of the rock cores, we observe the presence of the reworked mélange near the surface with non-sheared irregular structure which indicates the result of the slumping mechanism. Thus, we infer that the recent deformation on the escarpment is affected by two mechanisms, faulting and slumping.
Abstract i
摘要 ii
Acknowledgments iii
Table of Content iv
List of Figures vi
List of Tables ix
Chapter 1: Introduction 1
1-1 General description of Chihshang Fault 1
1-2 Tectonic of Taiwan 2
1-3 Review of Chihshang Fault activities related to the major geomorphic scarp 2
1-4 Review of Chihshang Fault characteristics along the geomorphic scarp 3
1-5 Aims and structure of this thesis 4
Chapter 2: Methodology 13
2-1 Field survey 13
2-2 Electric Resistivity Tomography (ERT) 13
2-3 Core analysis 15
2-4 Radiocarbon dating (14C) 16
2-5 Inclinometer monitoring 16
2-5-1 General description of inclinometer data 16
2-5-2 Data processing 17
Chapter 3: Results 24
3-1 Field survey 24
3-1-1 Damaged man-made structures 24
3-1-2 Evidence of local landslide 24
3-1-3 Alluvial deposits at the top of the hill 25
3-2 Core analysis result 25
3-2-1 Cylindrical core analysis 25
3-2-2 Half-Cylindrical core analysis 26
3-3 Radiocarbon dating results 27
3-4 Inclinometer record 28
Chapter 4: Discussion 41
4-1 The trace of Chihshang main fault at Tapo ES area 41
4-2 The movement characteristics in the fault zone 43
4-3 The gravitational effect at Tapo Elementary School 43
4-3-1 Evidence of reworked material based on core observation 43
4-3-2 Active movement of reworked material based on inclinometer data 45
4-4 Subsurface structure at Tapo Elementary School area 46
4-5 Reconstruction of the evolution of the Chihshang Fault movement 48
4-6 Uplift rate of the Chihshang Fault at Tapo 50
4-6-1 Uplift rate based on inclinometer data 50
4-6-2 Uplift rate based on the elevation of the alluvial deposit on the top of the hill 51
Chapter 5: Conclusions 72
References 73
Appendixes 76
Angelier, J., H.T. Chu, J.C. Lee, 1997. Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274, 117-143. doi: 10.1016/S0040-1951(96)00301-0
Bird, M. I., 2013. Radiocarbon dating: charcoal. In: Encyclopedia of Quaternary Science. Eds: S. A. Elias, 4, 353-360. doi: 10.1016/B978-0-444-53643-e.00047-9
Biq, C. C., 1972. Dual-trench structure in the Taiwan-Luzon region. Proceeding of the Geological Society of China, 15, 65-75.
Chai, B. H. T, 1972. Structure and Tectonic Evolution of Taiwan. Am. J. Sci., 272, 389-422. doi: 10.1016/0040-1951(75)90090-6
Chang, C. P., J. Angelier, C. Y. Huang, 2000. Origin and evolution of mélange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325, 43-62. doi: 10.1016/S0040-1951(00)00130-X
Chang, C.P., J. Angelier, C. Y. Huang, 2001. Structural evolution and significance of a mélange in a collision belt: the Lichi Mélange and the Taiwan arc-continent collision. In: Geol. Mag., 138, 633-651. Cambridge University Press. doi: 10.1017/S0016756801005970
Chang, P. Y., W. J. Huang, C. C. Chen, H. I. Hsu, I. C. Yen, G. R. Ho, J. C. Lee, … et al., 2018. Probing the frontal deformation zone of the Chihshang Fault with boreholes and high-resolution electrical resistivity imaging methods: A case study at the Dapo site in eastern Taiwan. J. Appl. Geophys., 153, 127-135. doi: 10.1016/j.jappgeo.2018.04.006
Chang, Q., 2013. Evolution of the Holocene Uplifted Terraces along the Chihshang Fault: Interactions between Tectonics Uplift and Fluvial Sedimentation. MS thesis, National of Taiwan University, 124 pp in Chinese with English abstract).
Chen, H. Y., S. B. Yu, L. C. Kuo, C. C. Liu, 2005. Coseismic and postseismic surface displacement of the 10 December 2003 (Mw 6.5), eastern Taiwan, earthquake. Earth Planet and Space, 58, 5-21. doi: 10.1186/BF03351908
Chen, W. S., 2008. The fault slip long-term velocity and recurrence period. In: Report of Central Geological Survey, pp. 31-40.
Cheng, S. N., Y. T. Yeh, M. S. Yu, 1996. The 1951 Taitung earthquake in Taiwan. Journal of the Geological Society of China, 39, 267-285.
Green, G. E., P. E. Mikkelsen, 1986, 1986. Measurement of ground movement with inclinometers. Proceedings of Fourth International Geotechnical Seminar on Field Instrumentation and In-Situ measurement. Pp 235-246.
Horne, G. S., 1970. Complex Volcanic-Sedimentary Patterns in the Magog Belt of Northeastern Newfoundland. Geol. Soc. Am. Bull., 81, 1767-1788.
Hsu, T. L., 1962. Recent Faulting in the Longitudinal Valley of Eastern Taiwan. Memoir of the Geological Society of China, 1, 95-102.
Hsu, Y.J., S. B. Yu, H. Y. Chen, 2009. Co-seismic and postseismic deformation associated with the 2003 Chengkung, Taiwan, earthquake. Geophys. J. Int., 176, 420-430. doi: 10.1111/j.1365-246X.2008.04009.x
Hsu, Y. J., Y. R. Lai, R. J. You, H. Y. Chen, L. S. Teng, Y. C. Tsai, C. H. Tang, H. H. Su, 2018. Detecting rock uplift across southern Taiwan mountain belt by integrated GPS and leveling data. Tectonophysics, 744, 275-284. doi: 10.1016/j.tecto.2018.07.012
Huang, W. H., 2000. Geologic Map of Taiwan. Central Geological Survey, Taiwan.
Jiang, Y. L., H. T. Chu, J. C. Lee, C. Y. Huang, 2012. Investigation and Characterization of Surface Ruptures and Deformation Zone of the Chihshang Fault, Eastern Taiwan. In: Report of Central Geological Survey, pp. 101-138.
Lee J. J., J. Angelier, H. T. Chu, J. C. Hu, F. S. Jeng, 2001. Monitoring active fault creep as a tool in seismic hazard mitigation. Insight from creepmeter study at Chihshang, Taiwan. C. R. Geoscience, 337, 1200-1207. doi: 10.1016/j.crte.2005.04.018
McCalpin, J. P., G. A. Carver, 2009. Paleoseismology of Compressional Tectonic Environments. Geophys. J. Int., 95, 327-330. doi: 10.1016/S0074-6142(09)95005-7
Mikkelsen, P. E., 2003. Advances in Inclinometer Data Analysis. Symposium on Field Measurements in Geomechanics, Norway.
Mu, C. H., J. Angelier, J. C. Lee, H. T. Chu, J. J. Dong, 2011. Structure and Holocene evolution of an active creeping thrust fault: The Chihshang fault at Chinyuan (Taiwan). J. Struct. Geol., 33, 743-755. doi: 10/1016/j.jsg.2011.01.015
Shyu, J. B. H., L. H. Chung, Y. G. Chen, J. C. Lee, K. Sieh, 2007. Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonics implications. J. Asian Earth Sci., 31, 317-331. doi: 10.1016/j.jseaes.2006.07.018
Slope Indicator Company. Digitilt Inclinometer Probe 50302599. Mukilteo Wash., 2011, 14 pp.
Stark, T. D., H. Choi, 2008. Slope inclinometers for landslides. Landslides, 5, 339-350. doi: 10.1007/s10346-008-0126-3
Tchalenko, J.S., 1970. Similarities between Shear Zones of Different Magnitudes. Geo. Soc. Am. Bull., 81, 1625-1640.
Telford, W. M., L. P. Geldart, R. E. Sheriff, 1990. Resistivity Methods. In: Applied Geophysics. Second Edition. Cambridge University Press, New York.
Tseng, Y.C., 2019. Paleoseismic study of Milun active fault in Hualien, eastern Taiwan. MS thesis, National Central University, 138 pp in Chinese with English abstract).
Yen, I. C., W. S. Chen, S. H. Sung, N. W. Huang, C. C. Yang, Y. C. Liu, C. W. Lin, 2014. Paleoseismological study on the Chihshang segment of the Longitudinal Valley Fault in eastern Taiwan. Central Geological Survey Special Publication, 28, 43-70 (in Chinese with English abstract).
Yu, S. B., C. C. Liu, 1989. Fault Creep on the Central Segment of the Longitudinal Valley Fault, Eastern Taiwan. Proceedings of the Geological Society of China, 32, 209-231.
Yu, M. S., S. N. Cheng, Y. T. Yeh, 1994. Segmentation of the Taitung Longitudinal Valley fault zone. Ti-Chih, 40, 97-120 (in Chinese with English abstract).
Zhang, B. Y., 2018. Survey the near ground deformation induced by active faulting. In: Report of Central Geological Survey, pp. 69-77.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔