( 您好!臺灣時間:2021/05/06 07:00
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chi-Chien Sun
論文名稱(外文):An artificial intelligence approach for spatial mapping of groundwater occurrence and its application of public health management: Spatial health risk assessment associated with ingestion of arsenic-affected groundwater in the Lanyang Plain
指導教授(外文):Jui-Sheng ChenChing-Ping Liang
外文關鍵詞:back-propogation neuron networkgroundwater arsenic contaminationhealth riskLanyang Plain
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
位在台灣東北部的蘭陽平原地下水儲量豐富,並廣泛的使用在農業灌溉、漁業養殖、家庭用水甚至是飲用水中。然而,部分地下水中的砷濃度超過世界衛生組織的飲用水水質標準且呈現空間變異性,飲用砷污染水造成的健康風險也因地區而不同;因此評估地下水砷污染的空間分佈在水資源保護及公共衛生管理上是很重要的。研究的目的是以倒傳遞訓練法的類神經網路(BPNN)分析在蘭陽平原地下水砷污染之空間變異性,並將結果與普通克利金法(OK)比較,透過交叉驗證的方式將資料分成三組來呈現結果,BPNN及OK的平均決定係數分別為R^2=0.55及R^2=0.49,而平均的均方根誤差為RMSE=0.49及RMSE=0.54。由於BPNN比OK更能準確地預測地下水砷濃度,將其作為一種可靠的地下水污染空間繪圖工具,並根據美國環境保護署提出的致癌風險(Target Risk)及非致癌風險(Hazard Quotient)轉換為健康風險分布圖,用以劃定地下水砷污染的高風險地區,優先考慮對不安全的地下水進行更深入監控;此外,政府需要開發安全的水資源,以替代具有風險的地下水。
Groundwater reserves in the Lanyang plain are abundant and widely used for agricultural irrigation, aquaculture farming, domestic and drinking. However, some groundwater arsenic (As) concentration far exceeds the drinking water quality standard of the World Health Organization (WHO) and exists a spatial variability. For protecting the water resource and improving the public health management, it is necessary to consider the spatial variability of groundwater As contamination. The purpose of this study is to apply back-propogation neuron network (BPNN) methods to carry out spatial mapping of the groundwater As concentration and compare with geostatistical Ordinary Kriging (OK) method. Cross validation is used to distribute the monitoring data into three sets in order to reveal the predicting performance. The results show that the average determination coefficients (R^2) of cross validation for As concentrations obtained with BPNN and OK are 0.55 and 0.49, respectivly, and the average root mean square error (RMSE) are 0.49 and 0.54. Considering that the BPNN can yield a higher correct than OK, it is recommended as a reliable method for spatial mapping the groundwater contamination. Therefore, the As concentrations estimated by BPNN are transformed to the associated human health risk based on the hazard quotient (HQ) and target risk (TR) established by the U.S. Environmental Protection Agency. The spatial maps of the groundwater contamination can be used to demarcated to describe the areas that residents are at high risk due to the ingestion of As containing groundwater, prioritize the areas where more intensive monitoring of unsafe groundwater quality is required. Moreover, the government needs to develop safe water resources as alternatives to using unsafe groundwater.
Chapter 1 Introduction...1
1-1 Motivation...1
1-1-1 Water resource in Taiwan...1
1-1-2 Groundwater pollutant occurrence in the Lanyang Plain...3
1-1-3 Adverse health effect from arsenic exposure...5
1-1-4 Spatial variability of Groundwater pollutant occurrence...8
1-2 Literature Review...10
1-3 Objectives...13
Chapter 2 Materials and Methods...14
2-1 Study Area...14
2-2 Groundwater samples...19
2-3 Geostatistical method...21
2-4 Artificial neural network...24
2-5 Health risk assessment...32
Chapter 3 Results and Discussion...37
3-1 Groundwater monitoring data...37
3-1-1 Descriptive statistical analysis of As concentration...37
3-1-2 Data preprocessing...41
3-2 Arsenic concentration prediction...46
3-2-1 Ordinary kriging method...46
3-2-2 Feedforward back prorogation neural network method...49
3-2-3 Accuracy assessment of the predicted results...55
3-3 Application of spatial mapping by predictive As concentration...65
3-3-1 Spatial health risk assessment from drinking demand...65
3-3-2 Safe zone for irrigation & aquaculture demands...71
Chapter 4 Conclusions and Suggestions...73
Agency for Toxic Substances Disease Registry (ATSDR). Toxicological profile for arsenic, Atlanta, 1993.
Agency for Toxic Substances Disease Registry (ATSDR). Toxicological profile for arsenic (update)., Atlanta, GA: U.S. Public Health Service, 2000.
Agency for Toxic Substances Disease Registry (ATSDR). Toxicological profile for arsenic, Atlanta, 2007.
Barzegar, R., Moghaddam, A. A., & Baghban, H., “A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, Iran”, Stoch Environ Res Risk Assess, 30, 883-899, 2016.
Basu, A., Saha, D., Saha, R., Ghosh, T., & Saha, B., “A review on sources, toxicity and remediation technologies for removing arsenic from drinking water”, Res Chem Intermed. 40(2), 447–485, 2014.
Chao, S. J., Hwang, H., & Hsu, Y. C., “Analysis of Soil Characteristics in Lanyang Plain”, Journal of National Ilan University, 6, 53-64, 2010.
Chen, C. J., Scientific American, 2014, Retrieved from: https://sa.ylib.com/MagArticle.aspx
Cho, K. H., Sthiannopkao, S., Pachepsky, Y. A., Kim, K. W., & Kim, J. H., “Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network”, WATER REASEARCH, 45, 5535-5544, 2011.
Chowdhury, M., Alouani, A., Hossain, F., “Comparison of ordinary kriging and artificial neural network for spatial mapping of arsenic contamination of groundwater”, Stoch Environ Res Risk Assess, 24, 1-7, 2010.
國立台灣大學公共衛生學院健康風險及政策評估中心, “Compilation of Exposure Factors”, 2018.
Council of Agriculture. Retrieved from: https://law.coa.gov.tw/glrsnewsout/LawContent.aspx?id=GL000066
Environmental Protection Administration (EPA). Retrieved from: https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=O0040005&flno=3
International Agency for Research on Cancer (IARC). A Review of Human Carcinogens: Arsenic, Metals, Fibers, and Dusts, Lyon, France, 2012.
Jean, J. S., Bundschuh, J., Chen, C. J., Lin, T. F., & Chen, Y. H., The Taiwan crisis: a showcase of the global arsenic problem. CRC Press, New York, 2010.
Jeihouni, M., Delirhasannia, R., Alvipanah, S. K., Shahabi, M., & Samadianfard, S., “Spatial analysis of groundwater electrical conductivity using ordinary kriging and artificial intelligence methods (Case study: Tabriz plain, Iran)”, GEOFIZIKA, VOL. 32, 2015.
Lee, J. J., Jang, C. S., Wang, S. W., & Liu, C. W., “Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose response model”, Science of the Total Environment, 384, 151-162, 2007.
Lee, J. J., “Geochemical characteristics of arsenic in groundwater of Lanyang Plain and human health risk assessment.”, 2008.
Liang, C. P., Chien, Y. C., Jang, C. S., C, C. F., & Chen, J. S., “Spatial Analysis of Human Health Risk Due to Arsenic Exposure through Drinking Groundwater in Taiwan’s Pingtung Plain”, Int. J. Environ. Res. Public Health, 14, 81, 2017.
Liang, C. P., Chen, J. S., Chien, Y. C., & Chen, C. F., “Spatial analysis of the risk to human health from exposure to arsenic contaminated groundwater: A kriging approach”, Science of the Total Environment, 627, 1048-1057, 2018.
Manzurul Hassan, M., Arsenic in Groundwater: Poisoning and Risk Assessment., CRC Press., 2018.
McGrory, E. R., Brown, C., Bargary, N., Williams, N. H., Mannix, A., Zhang, C. S., Henry, T., Daly, E., Nicholas, S., Petrunic, B. M., Lee, M., Morrison, L., “Arsenic contamination of drinking water in Ireland: A spatial analysis of occurrence and potential risk”, Science of the Total Environment, 579, 1863-1875, 2017.
Navoni, J. A., De Pietri, D., Olmos, V., Gimernez, C., Bovi Mitre, G., de Titto, E., & Villaamil Lepon, E. C., “Human health risk assessment with spatial analysis: Study of a population chronically exposed to arsenic through drinking water from Argentina”, Science of the Total Environment, 499, 166-174, 2014.
Purkait, B., Kadam, S. S., Das, S. K., “Application of Artificial Neural Network Model to Study Arsenic Contamination in Groundwater of Malda District, Eastern India”, Journal of Environmental Informatics, 12(2), 140-149, 2008.
Shakoor, M. B., Nawaz, R., Hussuan, F., Raza, M., Ali, S., Rizwan, M., Oh, S. E., & Ahmad, S., “Human health implications, risk assessment and remediation of As-contaminated water: A critical review”, Science of the Total Environment 601–602, 756–769, 2017.
Smedley, P. L., & Kinniburgh, D. G., “A view of the source, behavior and distribution of arsenic in natural water”, Applied Geochemistry, 17, 517-568, 2002.
Tseng, W. P., Chu, H. M., How, S. W., Fong, J. M., Lin, C. S., & Yeh, S., “Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan”, J. Nat. Cancer Inst. 40, 453–463, 1968.
United States Environmental Protection Agency (USEPA). List of drinking water contaminants and MCLs., Washington, DC, 2002a.
United States Environmental Protection Agency (USEPA). Child-specific exposure factors handbook (Interim report)., Washington, DC, 2002b.
United States Environmental Protection Agency (USEPA). Guidelines for Carcinogen Risk Assessment, Washington, DC, 2005.
United States Environmental Protection Agency (USEPA). Drinking Water Arsenic Rule History. Retrieved from:https://www.epa.gov/dwreginfo/drinking-water-arsenic-rule-history#proposedarsenic
United States Environmental Protection Agency (USEPA). Integrated Risk Information System (IRIS) Assessment. Retrieved from: https://cfpub.epa.gov/ncea/iris_drafts/atoz.cfm
United States Environmental Protection Agency (USEPA). Online course. Retrieved from:https://www.epa.gov/wqs-tech/supplemental-module-human-health-ambient-water-quality-criteria
Water Resources Bureau, Ministry of Economic Affairs, Taiwan. Retrieved from: https://www.wra.gov.tw/6950/7169/7316/7321/109285/
World Health Organization (WHO). Environmental health criteria 18: arsenic. Switzerland, 1981.
World Health Organization (WHO). Guidelines for Drinking Water Quality: Recommendations. Vol 1, Geneva, 1993.
World Health Organization (WHO). International Standards for Drinking-Water, Geneva, 1958.
World Health Organization (WHO). International Standards for Drinking-Water, Second edition, Geneva, 1963.
電子全文 電子全文(網際網路公開日期:20220801)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔