跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 23:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李凱強
研究生(外文):Kai-Chiang LI
論文名稱:應用生質物混燒灰渣取代水泥生料燒製環保水泥之可行性研究
論文名稱(外文):Feasibility of Eco-Cement Manufactured from Co-Fired Biomass Ash and Raw Cement Materials
指導教授:江康鈺江康鈺引用關係
指導教授(外文):Kung-Yuh Chiang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:132
中文關鍵詞:混燒灰渣水泥係數環保水泥水化反應
外文關鍵詞:co-fired ashcement moduluseco-cementhydration reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試利用實驗室規模之高溫爐及旋轉窯系統,評估8家鍋爐業者混燒灰渣,作為取代水泥生料之可行性,試驗過程分別控制水泥係數、升溫速率、燒結溫度與時間等條件,探討混燒灰渣取代水泥生料及燒製環保水泥熟料之物化及機械特性,以作為後續混燒灰渣再利用之參考。
研究結果顯示,高溫爐燒製之環保水泥熟料,在抗壓強度方面,對照組各齡期之強度,分別為75.48 kgf/cm2、134.91 kgf/cm2及216.42 kgf/cm2;然而,以混燒灰渣燒製環保水泥之機械強度均不高,經養護後,僅以KYP BA(廣O造紙之混燒底渣)組之抗壓強度,可優於對照組,分別達101.16 kgf/cm2、130.65 kgf/cm2及230.00 kgf/cm2。
為進一步評估旋轉窯系統對燒製環保水泥之影響,試驗結果顯示,旋轉窯燒製之環保水泥熟料,游離氧化鈣含量,由平均1.5%降至平均1.0%;凝結時間平均介於150至250分鐘,相較於高溫爐燒製之熟料而言,凝結時間縮短約50分鐘。抗壓強度方面,對照組各齡期強度分別達到120.00kgf/cm2、191.76kgf/cm2及273.33kgf/cm2,相較於高溫爐熟料亦增加約50%。相較之前KYP BA組之抗壓強度,平均為168.32kgf/cm2、195.03kgf/cm2及263.87kgf/cm2,已可達到CNS 61規範標準。顯示旋轉窯有較佳煅燒效果,可生成水泥熟料之主要礦物組成。
根據水泥熟料試體之水化反應分析結果顯示、養護初期已可觀察到主要水化產物CH及C-S-H膠體的存在,且會隨著養護齡期增加而越趨明顯。另根據XRD、FTIR峰值以及SEM結構變化分析結果可知,對照組與KYP BA組於後期波峰強度可達10,000以上,且水泥熟料表面特性亦有較緊密結構存在,此與抗壓強度明顯增加之分析結果相吻合。整體而言,根據本研究之相關成果,已初步驗證混燒灰渣取代傳統水泥生料,燒製成環保水泥之可行性,可提供作為後續相關技術之發展與政策研擬之參考。
This research investigates on the feasibility of replacing the cement raw materials with co-fired biomass ash by using laboratory scale fixed-bed furnace and rotary kiln system. The physical, chemical and mechanical characteristics of the cement clinker manufactured by different co-fired ash addition were controlled the cement modulus, heating rate, sintered temperature, and sintered time.
The fixed-bed experimental results showed that the compressive strength of cement clinker manufactured by cement raw materials were 75.48 kgf/cm2 (3 days), 134.91 kgf/cm2 (7 days), and 216.42 kgf/cm2 (28 days). However, compressive strengths of eco-cement produced by different co-fired ash addition were lower than that of the cement clinker. Only one eco-cement (produced by KYP BA) compressive strengths were 101.16 kgf/cm2 (3 days), 130.65 kgf/cm2 (7 days), and 230.00 kgf/cm2 (28 days), respectively, higher than that of cement clinker.
To further assess the effect of eco-cement sintered by rotary kiln system, the results indicated that the f-CaO content of the eco-cement clinker was decreased from 1.5% to 1.0% resulted in applying the rotary kiln system. For the setting time, the initial and final setting time of the eco-cement sintered by rotary kiln system were approximately ranged from 150 minutes to 250 minutes. Comparing with fixed-bed furnace, it could reduce 50 minutes setting time. In the case of the compressive strength of cement clinker produced by rotary kiln system, the compressive strengths were 120.00 kgf/cm2 (3 days), 191.76 kgf/cm2 (7 days), and 273.33 kgf/cm2 (28 days), respectively. However, the compressive strengths of eco-cement sintered by KYP BA were in compliant with CNS 61 standard criteria which there were 168.32 kgf/cm2 (3 days), 195.03 kgf/cm2 (7 days), and 263.87 kgf/cm2 (28 days). It implied that the main mineral composition of the cement clinker was formed by rotary kiln system.
According to the hydration results of clinkers, the main hydration products C-H and C-S-H gel could be observed at the early curing stage. The C-H and C-S-H gel were significantly increased with the curing age increasing. Based on the XRD, FTIR, and SEM analysis results, it can find out the above experimental results were consistent with the trends in compressive strength increasing. Overall, the relevant results of this research has proved the feasibility of eco-cement manufactured from co-fired biomass ash and cement raw materials, but also can provide useful information for the development of related technologies and policy formulation in eco-cement manufacturing.
摘要 i
Abstract iii
目錄 v
圖目錄 vii
表目錄 ix
第一章 前言 1
第二章 文獻回顧 5
2-1 混燒灰渣 5
2-1-1 混燒灰渣之物化特性 5
2-1-2 混燒灰渣之再利用技術 7
2-2 水泥熟料晶相之形成與轉換 10
2-3 化合物對水泥燒製的影響 13
2-4 水泥之燒結溫度 15
2-5 環保水泥 17
第三章 實驗材料與方法 29
3-1 實驗材料 29
3-1-1 傳統水泥生料 29
3-1-2 混燒飛灰與底渣 29
3-2 實驗流程 30
3-3 實驗操作條件 32
3-3-1 預先試驗 32
3-3-2 水泥生料配比 32
3-3-3 水泥燒結試驗 34
3-4 實驗方法與分析項目 37
3-4-1 原料基本特性分析 37
3-4-2 水泥熟料與試體分析 40
第四章 結果與討論 49
4-1 實驗材料基本特性分析 49
4-1-1 原料之基本特性分析 49
4.1.2 原料之重金屬總量及溶出試驗( TCLP )結果 52
4-2 高溫爐燒製環保水泥之特性分析 54
4-2-1 熟料之物化特性分析結果 54
4-2-2 熟料試體之特性分析 68
4-3 旋轉窯燒製環保水泥之特性分析 77
4-3-1 熟料之物化特性分析結果 77
4-3-2 熟料試體之特性分析 83
4-4 旋轉窯水泥漿體之水化產物分析 86
4-4-1 XRD 結晶相分析 86
4-4-2 旋轉窯熟料各齡期試體之SEM微觀分析 90
4-4-3 旋轉窯熟料各齡期試體之FTIR分析 94
第五章 結論與建議 99
5-1 結論 99
5-2 建議 102
參考文獻 103
Ali, M. B., Saidur R., Hossain M. S., 2011. A review on emission analysis in cement industries. Renewable and Sustainable Energy Reviews, 15(5), 2252-2261.
Alp, I., Deveci, H., Süngün, H. 2008. Utilization of flotation wastes of copper slag as raw material in cement production. Journal of hazardous materials, 159(2-3), 390-395.
Altun, I. A. 1999. Effect of CaF2 and MgO on sintering of cement clinker. Cement and concrete research, 29(11), 1847-1850.
Ampadu, K. O., & Torii, K. 2001. Characterization of ecocement pastes and mortars produced from incinerated ashes. Cement and concrete research, 31(3), 431-436.
Aouad, G., Laboudigue, A., Gineys, N., Abriak, N. E. 2012. Dredged sediments used as novel supply of raw material to produce Portland cement clinker. Cement and Concrete Composites, 34(6), 788-793.
Ashraf, M. S., Ghouleh, Z., Shao, Y. 2019. Production of eco-cement exclusively from municipal solid waste incineration residues. Resources, Conservation and Recycling, 149, 332-342.
Atahan, H. N., Oktar, O. N., Taşdemir, M. A. 2009. Effects of water–cement ratio and curing time on the critical pore width of hardened cement paste. Construction and Building Materials, 23(3), 1196-1200.
Barros, A. M., Espinosa, D. C. R., Tenorio, J. A. S. 2004. Effect of Cr2O3 and NiO additions on the phase transformations at high temperature in Portland cement. Cement and Concrete research, 34(10), 1795-1801.
Barros, A. M., Tenório, J. A. S., Espinosa, D. C. R. 2004. Evaluation of the incorporation ratio of ZnO, PbO and CdO into cement clinker. Journal of hazardous materials, 112(1-2), 71-78.
Bernardo, G., Telesca, A., Valenti, G. L. 2006. A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages. Cement and concrete research, 36(6), 1042-1047.
Boonserm, K., Sata, V., Pimraksa, K., Chindaprasirt, P. 2012. Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive. Cement and Concrete Composites, 34(7), 819-824.
Boughanmi, S., Labidi, I., Megriche, A., El Maaoui, M., Nonat, A. 2018. Natural fluorapatite as a raw material for Portland clinker. Cement and Concrete Research, 105, 72-80.
Caponero, J., Tenorio, J. A. 2000. Laboratory testing of the use of phosphate-coating sludge in cement clinker. Resources, Conservation and Recycling, 29(3), 169-179.
Chandara, C., Azizli, K. A. M., Ahmad, Z. A., Sakai, E. 2009. Use of waste gypsum to replace natural gypsum as set retarders in portland cement. Waste management, 29(5), 1675-1679.
Chen, G., Lee, H., Young, K. L., Yue, P. L., Wong, A., Tao, T., Choi, K. K. 2002. Glass recycling in cement production—an innovative approach. Waste Management, 22(7), 747-753.
Chen, H., Ma, X., Dai, H. 2010. Reuse of water purification sludge as raw material in cement production. Cement and Concrete Composites, 32(6), 436-439.
Chi, M., Huang, R. 2014. Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete. Cement and Concrete Composites, 45, 148-156.
Chindaprasirt, P., Rattanasak, U. 2010. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer. Waste Management, 30(4), 667-672.
Chindaprasirt, P., Rattanasak, U., Jaturapitakkul, C. 2011. Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials. Cement and Concrete Composites, 33(1), 55-60.
Chugh, Y.P., Patwardhan, A., Kumar, S. 2007. Demonstration of CFB ash as a cement substitute in concrete pier foundations for a Photo-Voltaic power system at SIUC, 2007 World of Coal Ash(WOCA), Covington, Kentucky, U.S.A.
El-Alfi, E. A., Gado, R. A. 2016. Preparation of calcium sulfoaluminate-belite cement from marble sludge waste. Construction and Building Materials, 113, 764-772.
Espinosa, D. C., Tenório, J. A. 2000. Laboratory study of galvanic sludge’s influence on the clinkerization process. Resources, conservation and recycling, 31(1), 71-82.
Iacobescu, R. I., Angelopoulos, G. N., Jones, P. T., Blanpain, B., Pontikes, Y. 2016. Ladle metallurgy stainless steel slag as a raw material in Ordinary Portland Cement production: a possibility for industrial symbiosis. Journal of cleaner production, 112, 872-881.
Iribarne, J., Iribarne, A., Blondin, J., Anthony, E. J. 2001. Hydration of combustion ashes—a chemical and physical study. Fuel, 80(6), 773-784.
Johnson, A., Catalan, L. J., & Kinrade, S. D. 2010. Characterization and evaluation of fly-ash from co-combustion of lignite and wood pellets for use as cement admixture. Fuel, 89(10), 3042-3050.
Kikuchi, R. 2001. Recycling of municipal solid waste for cement production: pilot-scale test for transforming incineration ash of solid waste into cement clinker. Resources, Conservation and Recycling, 31(2), 137-147.
Kolovos, K. G. 2006. Waste ammunition as secondary mineralizing raw material in Portland cement production. Cement and Concrete Composites, 28(2), 133-143.
Koukouzas, N., Ward, C. R., Papanikolaou, D., Li, Z., & Ketikidis, C. 2009. Quantitative evaluation of minerals in fly ashes of biomass, coal and biomass–coal mixture derived from circulating fluidised bed combustion technology. Journal of Hazardous Materials, 169(1-3), 100-107.
Krammart, P., Tangtermsirikul, S. 2004. Properties of cement made by partially replacing cement raw materials with municipal solid waste ashes and calcium carbide waste. Construction and Building Materials, 18(8), 579-583.
Lederer, J., Trinkel, V., Fellner, J. 2017. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria. Waste management, 60, 247-258.
Li, H., Xu, W., Yang, X., Wu, J. 2014. Preparation of Portland cement with sugar filter mud as lime-based raw material. Journal of cleaner production, 66, 107-112.
Li, X., Huang, H., Xu, J., Ma, S., Shen, X. 2012. Statistical research on phase formation and modification of alite polymorphs in cement clinker with SO3 and MgO. Construction and Building Materials, 37, 548-555.
Li, X., Xu, W., Wang, S., Tang, M., Shen, X. 2014. Effect of SO3 and MgO on Portland cement clinker: Formation of clinker phases and alite polymorphism. Construction and Building Materials, 58, 182-192.
Lin, K. L., Lo, K. W., Hung, M. J., Cheng, T. W., Chang, Y. M. 2017. Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker. Sustainable Environment Research, 27(5), 251-257.
Lin, Y., Zhou, S., Li, F., Lin, Y. 2012. Utilization of municipal sewage sludge as additives for the production of eco-cement. Journal of hazardous materials, 213, 457-465.
Ludwig, H. M., Zhang, W. 2015. Research review of cement clinker chemistry. Cement and Concrete Research, 78, 24-37.
Ma, S., Ge, D., Li, W., Hu, Y., Xu, Z., Shen, X. 2019. Reaction of Portland cement clinker with gaseous SO2 to form alite-ye'elimite clinker. Cement and Concrete Research, 116, 299-308.
Mo, L., Deng, M., & Tang, M. 2010. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials. Cement and Concrete Research, 40(3), 437-446.
Pan, J. R., Huang, C., Kuo, J. J., Lin, S. H. 2008. Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Management, 28(7), 1113-1118.
Poon, C. S., Kou, S. C., Lam, L., Lin, Z. S. 2001. Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4). Cement and Concrete Research, 31(6), 873-881.
Puertas, F., García-Díaz, I., Barba, A., Gazulla, M. F., Palacios, M., Gómez, M. P., Martínez-Ramírez, S. 2008. Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement and Concrete Composites, 30(9), 798-805.
Ren, X., Zhang, W., Ouyang, S. 2012. Effect of multiple foreign ions doping on metastable structure of alite. Journal of the Chinese Ceramic Society, 40(5), 664-670.
Saikia, N., Kato, S., Kojima, T. 2007. Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Management, 27(9), 1178-1189.
Shen, Y., Qian, J., Zhang, Z. 2013. Investigations of anhydrite in CFBC fly ash as cement retarders. Construction and Building Materials, 40, 672-678.
Sheng, G., Li, Q., Zhai, J., Li, F. 2007. Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke. Cement and Concrete Research, 37(6), 871-876.
Sheng, G., Zhai, J., Li, Q., Li, F. 2007. Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement. Fuel, 86(16), 2625-2631.
Shih, P. H., Chang, J. E., Chiang, L. C. 2003. Replacement of raw mix in cement production by municipal solid waste incineration ash. Cement and concrete research, 33(11), 1831-1836.
Shon, C. S., Saylak, D., Zollinger, D. G. 2009. Potential use of stockpiled circulating fluidized bed combustion ashes in manufacturing compressed earth bricks. Construction and Building Materials, 23(5), 2062-2071.
Wang, S. 2014. Compressive strengths of mortar cubes from hydrated lime with cofired biomass fly ashes. Construction and Building Materials, 50, 414-420.
Wang, S. 2014. Quantitative kinetics of pozzolanic reactions in coal/cofired biomass fly ashes and calcium hydroxide (CH) mortars. Construction and Building Materials, 51, 364-371.
Xu, H., Li, Q., Shen, L., Zhang, M., Zhai, J. 2010. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis. Waste Management, 30(1), 57-62.
Yamashita, M., Tanaka, H., Sakai, E., Tsuchiya, K. 2019. Mineralogical study of high SO3 clinker produced using waste gypsum board in a cement kiln. Construction and Building Materials, 217, 507-517.
Young, G., Yang, M. 2019. Preparation and characterization of Portland cement clinker from iron ore tailings. Construction and Building Materials, 197, 152-156.
Zhao, Y., Ren, Q., Na, Y. 2019. Potential utilization of phosphorus in fly ash from industrial sewage sludge incineration with biomass. Fuel processing technology, 188, 16-21.
王怡翔,添加循環式流體化床飛灰及水淬高爐石粉對於混凝土性質影響之研究,國立臺灣海洋大學河海工程學系,碩士論文,基隆,2013。
王昱智,副產石灰為混凝土膠結材料之配比與特性研究,國立中央大學土木工程研究所,碩士論文,桃園,2008。
朱學德,添加循環式流體化床混燒飛灰及粉煤灰對於水泥質複合材料性能影響之研究,國立臺灣海洋大學材料工程研究所,碩士論文,基隆,2015。
行政院環境保護署網站,環境資源資料開放平臺,各事業廢棄物代碼申報流向統計,網址:https://opendata.epa.gov.tw/Data/Contents/OTH01664,網頁擷取日期:2019年4月
李釗、簡坤葦、楊舒予,CFB 副產石灰激發水淬爐石粉機理之初步研究,台灣混凝土學會2013 年混凝土工程研討會,台北,2013。
汪翊鐙,副產石灰摻配爐石粉製作混凝土成效研究,國立中央大學土木工程研究所,碩士論文,桃園,2009。
林志鴻,淨水污泥再利用於水泥生料之研究,國立中央大學環境工程研究所,碩士論文,桃園,2010。
林忠逸,水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究,碩士論文,中央大學環境工程研究所,桃園,2003。
林東燦,污泥類廢棄物取代部分水泥原料燒製環保水泥之可行性研究,國立中央大學環境工程研究所,碩士論文,桃園,2006。
林耘丞,添加循環式流體化床飛灰及粉煤飛灰對於混凝土性質影響之研究,國立臺灣海洋大學河海工程學系,碩士論文,基隆,2013。
林凱隆、王鯤生、林忠逸、林家宏,廢棄污泥作為環保水泥替代性配料之研究,第十三屆下水道與環境再生研討會論文集,台北,第339-346 頁,2003。
林凱隆、羅康維,還原碴做為水泥生料燒製環保水泥之研究, 工業污染防治季刊,128期,第91-123頁,2014。
邱玟韶,焚化灰渣取代部分水泥生料燒製環保水泥之可行性研究,國立雲林科技大學營建工程系,碩士論文,雲林,2004。
翁和德,循環式流體化床鍋爐技術,化工技術第6卷第9期,1998
張家祥,廢觸媒與泥渣類廢棄物共同燒製環保水泥之水化特性研究,國立宜蘭大學環境工程研究所,碩士論文,宜蘭,2012。
張祖恩、蔣立中、盧幸成、施百鴻、張益國,重金屬污泥作為水泥替代原料可行性之研究,第十八屆廢棄物處理技術研討會,台中,第4-29頁,2003。
黃暉淇,循環式流化床燃燒飛灰應用於水泥質複合材料之機理與特性研究,國立台灣海洋大學材料工程研究所,碩士論文,基隆,2008。
楊舒予,以CFB副產石灰作為水淬爐石粉激發劑之可行性探討,國立中央大學土木工程研究所,碩士論文,桃園,2012。
劉彥良,混燒灰碴應用於控制性低強度材料工程性質之研究,國立臺灣海洋大學河海工程研究所,碩士論文,基隆,2015。
鄭敬融,生泥渣類廢棄物與TFT-LCD廢玻璃燒製環保水泥之研究,國立宜蘭大學環境工程研究所,碩士論文,宜蘭,2010。
羅康維,還原碴、水洗灰與泥渣類廢棄物共燒製水泥之水化特性研究,碩士論文,宜蘭大學環境工程研究所,宜蘭,2014。
電子全文 電子全文(網際網路公開日期:20241212)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊