(3.238.96.184) 您好!臺灣時間:2021/05/08 04:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張昊哲
研究生(外文):Hao-Che Chang
論文名稱:使用中機車粒狀物量測技術開發與行車型態污染物濃度影響
論文名稱(外文):Developing the technologies for measuring motorcycle exhausted particles and investigating the effects of driving modes
指導教授:蕭大智蕭大智引用關係江康鈺江康鈺引用關係
指導教授(外文):Ta-Chih HsiaoKung-Yuh Chiang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:108
中文關鍵詞:行車型態
外文關鍵詞:driving mode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據環保署2013 年的統計,交通排放所產生的PM2.5 以及NOX 為人為產生源最高的污染源,甚至超過工業排放。而根據交通部統計,機車為國人使用頻率最高的運具,直至2018 年年底數量已多達約1400 萬輛。而目前使用中且超過5年之機車,每年均須至定檢站進行排氣定期檢驗,確保排放符合標準,然而,檢測項目僅針對HC 以及CO 兩種污染物做檢驗,當中並沒有量測粒狀污染物,表示目前使用中機車粒狀物的排放是未知的,因此,本研究的主要目的是為機車排放粒狀物開發一種精確、快速與穩定的氣膠採樣和測量方法,並評估當前機車定期排氣檢定之有效性。實驗以裝置PM2.5 分徑器的採樣管進行機車排氣採樣,該分徑器浸於冰浴槽中,再依後端各量測儀器特性決定是否須進行稀釋量測。污染物分別在不同的行駛條件(加速、固定轉速、怠速與市區行車型態)下量測,氣狀物包括CO、HC、CO2、SO2、VOC、NOX 以及O2,粒狀物包括不透光度、黑碳質量濃度、微粒數目濃度、微粒質量濃度,微粒粒徑分布。氣體污染物主要受加速的影響。顆粒濃度隨著引擎轉速的增加而增加。含氧感知器故障會導致空燃比不穩定,並造成引擎的運行處於閉環狀態,從而導致CO,NOX 和HC 的濃度升高。排氣汽門間隙的增加會導致較高的HC 和顆粒物濃度,這可能是由於未燃燒的油氣洩漏所致。微粒數目濃度隨速度增加而增加。而黑碳和PM2.5 質量濃度僅在引擎轉速較高時才會顯示有效的測量值。因此,它們可能是篩選較嚴重污染者的理想選擇。應重新評估檢查和維護項目,以找出可能導致更高排放的因素。電子噴射引擎建議提高含氧感知器的檢查頻率和汽門間隙。根據本研究進行的測試,在機車部分功能異常時的HC 以及CO 排放濃度仍遠低於定檢之規範值,表示排放標準可能太寬鬆,但由於測試之車輛樣本較少,仍須更多的相關研究才能進一步探討。
Motorcycle is the most popular transportation tool in Taiwan. Periodic emission test is performed to ensure that all motorcycles conforms to EPA regulations governing emissions. So far, the particulate matter is not included in the emission test. Therefore, the main purpose of the present study is to develop a precise, rapid and stable aerosol sampling and measurement method for motorcycle emission. This study also aims to evaluate the effectiveness of the current motorcycle emission test program.
The motorcycle exhaust exiting the tailpipe is drawn into a sampling train with a PM2.5 separator which is immersed in an iced bath. The cooled exhaust is then either measured directly by gas/PM sensors, or through a diluter if the concentration is too high for the sensors. The gas (CO, HC, CO2, SO2, VOC, NOX, O2) and particulate (opacity, black carbon, particle number, particle mass, size distribution) real-time emissions are evaluated in different driving cycle (acceleration, fixed, idle and urban driving cycle).
The gas pollutants are mainly affected by the rate of acceleration, and show a slight increase in high speed. The particle concentration increases with increasing acceleration rate and speed. The oxygen sensor failure causes unstable air-fuel ratio, and the engine operation apparently is not in closed loop, causing the concentrations of CO, NOX and HC to rise. An increase in the exhaust valve clearance results in higher HC and particulate concentrations, probably due to the leaking of unburned oil and gas. Particle number increases with increasing speed. The black carbon and PM meters show valid measurement values only when the speed is high. Therefore, they might be ideal for screening heavy polluters. The inspection and maintenance items should be re-evaluated to identify the major factors that might cause higher emissions. The higher inspecting frequency of oxygen sensor and valve clearance is recommended. Yet, the emission standards are too loose based on the tests conducted in this work.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 台灣機車概況與污染物管制法規 3
2.1.1 數量與趨勢 3
2.1.2 污染管制與量測相關規範 5
2.2 機車排氣污染物種類與特性 10
2.2.1 氣狀污染物種類與特性 10
2.2.2 粒狀污染物種類與特性 12
2.2.3 粒狀污染物量測種類與指標 13
2.2.4 影響污染物排放濃度之因素 14
2.3 機車排氣採樣方式 (CVS、PFDS) 17
2.3.1 全稀釋採樣法 CVS 18
2.3.2 部分稀釋採樣法 PFDS 18
第三章 研究方法 20
3.1 研究架構 20
3.2 採樣系統 21
3.3 稀釋器 21
3.3.1 冷凝器 22
3.3.2 Nafion 22
3.3.3 分徑器 23
3.3.4 效能測試系統 23
3.4 量測系統 26
3.4.1 污染量測設備 26
3.4.2 車輛選擇與動力計 29
3.5 行車型態 30
3.5.1 市區型態 30
3.5.2 加速型態 31
3.5.3 定速型態 32
3.6 定檢項目調修方式 33
第四章 結果討論 36
4.1 採樣系統 36
4.1.1 降溫除濕效率 36
4.1.2 微粒穿透特性 38
4.2 量測系統 42
4.2.1 量測設備特性 42
4.2.2 引擎排放特性 44
4.2.3 影響排氣中可凝結性微粒物質之因素 50
4.3 影響污染物排放之因素 52
4.3.1 行車型態 54
4.3.2 調修項目 67
第五章 結論 72
5.1 採樣系統 72
5.2 量測系統 72
5.3 污染物排放特性與影響排放之因素 72
參考文獻 74
第六章 附錄 79
附錄1、定轉速型態原始數據 79
附錄2、市區行車型態原始數據 81
附錄3、加速型態原始數據 83
附錄4、調修項目原始數據 85
Bagley, S. T., Baumgard, K. J., Gratz, L. D., Johnson, J. H., Leddy, D. G. (1996). Characterization of fuel and aftertreatment device effects on diesel emissions. Research Report (Health Effects Institute):1-75; discussion 77-86.
Baltensperger, U., Streit, N., Weingartner, E., Nyeki, S., Prévôt, A., Van Dingenen, R., Virkkula, A., Putaud, J. P., Even, A., Ten Brink, H. (2002). Urban and rural aerosol characterization of summer smog events during the PIPAPO field campaign in Milan, Italy. Journal of Geophysical Research: Atmospheres 107:LOP 6-1-LOP 6-14.
Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: a review. Journal of Aerosol Science 36:896-932.
Chase, R. E., Duszkiewicz, G. J., Jensen, T. E., Lewis, D., Schlaps, E. J., Weibel, A. T., Cadle, S., Mulawa, P. (2000). Particle mass emission rates from current-technology, light-duty gasoline vehicles. Journal of the Air & Waste Management Association 50:930-935.
Clarke, A. G. (1996). Cross-duct monitoring of particulate emissions by opacity fluctuations. Environmental technology 17:101-106.
Dhital, N. B., Yang, H.-H., Wang, L.-C., Hsu, Y.-T., Zhang, H.-Y., Young, L.-H., Lu, J.-H. (2019). VOCs emission characteristics in motorcycle exhaust with different emission control devices. Atmospheric Pollution Research 10:1498-1506.
Dings, J. (2013). Mind the Gap! Why official car fuel economy figures don’t match up to reality. Transp. Environ.
Fontaras, G., Franco, V., Dilara, P., Martini, G., Manfredi, U. (2014). Development and review of Euro 5 passenger car emission factors based on experimental results over various driving cycles. Science of the Total Environment 468:1034-1042.
Giechaskiel, B., Ntziachristos, L., Samaras, Z. (2004). Calibration and modelling of ejector dilutors for automotive exhaust sampling. Measurement Science and Technology 15:2199.
Giechaskiel, B., Zardini, A. A., Clairotte, M. (2019). Exhaust Gas Condensation during Engine Cold Start and Application of the Dry-Wet Correction Factor. Applied Sciences 9:2263.
Högström, R., Karjalainen, P., Yli-Ojanperä, J., Rostedt, A., Heinonen, M., Mäkelä, J. M., Keskinen, J. (2012). Study of the PM gas-phase filter artifact using a setup for mixing diesel-like soot and hydrocarbons. Aerosol Science and Technology 46:1045-1052.
Hueglin, C., Scherrer, L., Burtscher, H. (1997). An accurate, continuously adjustable dilution system (1: 10 to 1: 104) for submicron aerosols. Journal of Aerosol Science 28:1049-1055.
Imhof, D., Weingartner, E., Prévôt, A., Ordónez, C., Kurtenbach, R., Wiesen, P., Rodler, J., Sturm, P., McCrae, I., Ekström, M. (2006). Aerosol and NO x emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes. Atmospheric Chemistry and Physics 6:2215-2230.
Kågeson, P. (1998). Cycle-beating and the EU test cycle for cars. European Federation for Transport and Environment (T&E), Brussels.
Karjalainen, P., Pirjola, L., Heikkilä, J., Lähde, T., Tzamkiozis, T., Ntziachristos, L., Keskinen, J., Rönkkö, T. (2014). Exhaust particles of modern gasoline vehicles: A laboratory and an on-road study. Atmospheric Environment 97:262-270.
Kenny, L., Merrifield, T., Mark, D., Gussman, R., Thorpe, A. (2004). The Ddevelopment and Designation Testing of a New USEPA-Approved Fine Particle Inlet: A Study of the USEPA Designation Process. Aerosol science and technology 38:15-22.
Kittelson, D., Johnson, J., Watts, W., Wei, Q., Drayton, M., Paulsen, D., Bukowiecki, N. (2000). Diesel aerosol sampling in the atmosphere. SAE transactions:2247-2254.
Kittelson, D. B. (1998). Engines and nanoparticles: a review. Journal of aerosol science 29:575-588.
Kleeman, M. J. and Cass, G. R. (1998). Source contributions to the size and composition distribution of urban particulate air pollution. Atmospheric Environment 32:2803-2816.
Kleeman, M. J., Schauer, J. J., Cass, G. R. (2000). Size and composition distribution of fine particulate matter emitted from motor vehicles. Environmental science & technology 34:1132-1142.
Kwon, S.-B., Lee, K. W., Saito, K., Shinozaki, O., Seto, T. (2003). Size-dependent volatility of diesel nanoparticles: Chassis dynamometer experiments. Environmental science & technology 37:1794-1802.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367.
Liao, H., Chen, W. T., Seinfeld, J. H. (2006). Role of climate change in global predictions of future tropospheric ozone and aerosols. Journal of Geophysical Research: Atmospheres 111.
Lipsky, E. M. and Robinson, A. L. (2006). Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and wood smoke. Environmental science & technology 40:155-162.
Liu, C.-N., Lin, S.-F., Awasthi, A., Tsai, C.-J., Wu, Y.-C., Chen, C.-F. (2014). Sampling and conditioning artifacts of PM2. 5 in filter-based samplers. Atmospheric environment 85:48-53.
Lyyränen, J., Jokiniemi, J., Kauppinen, E. I., Backman, U., Vesala, H. (2004). Comparison of different dilution methods for measuring diesel particle emissions. Aerosol Science and Technology 38:12-23.
Maricq, M. M. (2007). Chemical characterization of particulate emissions from diesel engines: A review. Journal of aerosol science 38:1079-1118.
Maricq, M. M., Chase, R. E., Xu, N. (2001a). A comparison of tailpipe, dilution tunnel, and wind tunnel data in measuring motor vehicle PM. Journal of the Air & Waste Management Association 51:1529-1537.
Maricq, M. M., Chase, R. E., Xu, N., Laing, P. M. (2001b). The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions:  light duty diesel vehicles. Environmental Science & Technology 36:283-289.
Maricq, M. M., Peabody, J. A., Lisiecki, J. P. (2018). Using partial flow dilution to measure PM mass emissions from light-duty vehicles. Aerosol Science and Technology 52:136-145.
Maricq, M. M., Podsiadlik, D. H., Chase, R. E. (1999). Gasoline vehicle particle size distributions: Comparison of steady state, FTP, and US06 measurements. Environmental science & technology 33:2007-2015.
Marotta, A., Pavlovic, J., Ciuffo, B., Serra, S., Fontaras, G. (2015). Gaseous emissions from light-duty vehicles: moving from NEDC to the new WLTP test procedure. Environmental science & technology 49:8315-8322.
Masum, B., Masjuki, H., Kalam, M., Fattah, I. R., Palash, S., Abedin, M. (2013). Effect of ethanol–gasoline blend on NOx emission in SI engine. Renewable and Sustainable Energy Reviews 24:209-222.
Morawska, L., Thomas, S., Jamriska, M., Johnson, G. (1999). The modality of particle size distributions of environmental aerosols. Atmospheric Environment 33:4401-4411.
Nelson, P. and Quigley, S. (1984). The hydrocarbon composition of exhaust emitted from gasoline fuelled vehicles. Atmospheric Environment (1967) 18:79-87.
Pham, C. T., Kameda, T., Toriba, A., Hayakawa, K. (2013). Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles. Environmental Pollution 183:175-183.
Pye, H., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., Seinfeld, J. (2009). Effect of changes in climate and emissions on future sulfate‐nitrate‐ammonium aerosol levels in the United States. Journal of Geophysical Research: Atmospheres 114.
Ruzal-Mendelevich, M., Katoshevski, D., Sher, E. (2016). Controlling nanoparticles emission with particle-grouping exhaust-pipe. Fuel 166:116-123.
Shen, X., Yao, Z., Huo, H., He, K., Zhang, Y., Liu, H., Ye, Y. (2014). PM2. 5 emissions from light-duty gasoline vehicles in Beijing, China. Science of the Total Environment 487:521-527.
Steven, H. (2001). Development of a Worldwide Harmonised Heavy-duty Engine Emissions Test Cycle, ECE-GRPE WHDC Working Group.
Suthisripok, T., Promjun, T., Rangron, A. (2011). A Comparative Study of a used 4-Stroke Motorcycle Engine Performance Using E85 and Gasoline 91. fuel 5:2.
Tai, A. P., Mickley, L. J., Jacob, D. J. (2010). Correlations between fine particulate matter (PM2. 5) and meteorological variables in the United States: Implications for the sensitivity of PM2. 5 to climate change. Atmospheric Environment 44:3976-3984.
Tobias, H. J., Beving, D. E., Ziemann, P. J., Sakurai, H., Zuk, M., McMurry, P. H., Zarling, D., Waytulonis, R., Kittelson, D. B. (2001). Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer. Environmental Science & Technology 35:2233-2243.
Tsai, J.-H., Hsu, Y.-C., Weng, H.-C., Lin, W.-Y., Jeng, F.-T. (2000). Air pollutant emission factors from new and in-use motorcycles. Atmospheric Environment 34:4747-4754.
Tsai, J.-H., Huang, P.-H., Chiang, H.-L. (2014). Characteristics of volatile organic compounds from motorcycle exhaust emission during real-world driving. Atmospheric environment 99:215-226.
Tsai, J.-H., Yao, Y.-C., Huang, P.-H., Chiang, H.-L. (2017). Criteria pollutants and volatile organic compounds emitted from motorcycle exhaust under various regulation phases. Aerosol Air Qual. Res 17:1214-1223.
Tsuchiya, K. and Hirano, S. (1975). Characteristics of 2-stroke motorcycle exhaust HC emission and effects of air-fuel ratio and ignition timing, SAE Technical Paper.
Varatharajan, K. and Cheralathan, M. (2012). Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review. Renewable and sustainable energy reviews 16:3702-3710.
Vouitsis, E., Ntziachristos, L., Samaras, Z. (2003). Particulate matter mass measurements for low emitting diesel powered vehicles: what's next? Progress in Energy and Combustion Science 29:635-672.
Yao, Y.-C., Tsai, J.-H., Wang, I.-T. (2013). Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend. Applied energy 102:93-100.
交通部統計處 (2017). 民眾日常使用運具狀況調查摘要分析.
李建德 (2004). 行車型態對車輛污染測試結果之相關性分析, in 車輛研測專刊, 財團法人車輛研究測試中心.
劉冠駿 (2016). 六期機車污染於打檔車計算換檔時機影響之研究.
盧昭輝 (2002). 機車污染排放之現況探討與管制策略研擬-機車污染排放特性探討與現況調查.
環保署 (2015). 排放管道中粒狀污染物採樣及其濃度之測定方法.
環保署 (2018). 環保署 (2018). 環保署-環境資源資料庫, 環保署,https://erdb.epa.gov.tw/ERDBIndex.aspx.
電子全文 電子全文(網際網路公開日期:20250713)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔