( 您好!臺灣時間:2021/05/08 18:12
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Peng-Hsun Hsu
論文名稱:光刺激發光劑量計對操作毒氣警報器之 人員劑量評估
論文名稱(外文):Personnel Dose Assessment of Operating Toxic Gas Alarm Device by Using Optically Stimulated Luminescence Dosimeter
指導教授(外文):Moo-Been Chang
外文關鍵詞:Optically Stimulated Luminescence DosimeterDose AssessmentToxic Gas Alarm Device
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
吾面對化生放核 狀況,當以預警、防護、偵檢、消除、救護等程序應處,其中預警乃重中之重,而面對具有窮人原子彈之稱的化學戰劑,更需要仰賴預警裝備在最前線替部隊把關,然國軍現役M8A1毒氣警報器及GID-3化學警報器兩種預警裝備皆運用放射性物質來使氣體離子化的方式以偵檢化學物質,因裝備含有放射性物質,可能使操作人員曝露於放射性自發衰變伴隨產生的游離輻射,故須進行劑量評估,以確保操作人員的安全,本研究在預警裝備表面、裝備庫房、實驗室等處使用光刺激發光劑量計(OSLD)進行劑量評估作業,測量年法定工時2000小時下的輻射曝露量,並與部隊駐地訓練、專業專長訓練、基地測考、演習、裝備保養維護等會操作預警裝備的時數進行分析,探討操作時數與法定劑量限度之間的關係,以確保操作毒氣警報器人員的輻射曝露是在法定的劑量限度內,經監測評估,M8A1毒氣警報器裝備表面輻射劑量率為0.59μSv/h,GID-3化學警報器表面輻射劑量率為0.12μSv/h,依訓練計畫每年操作預警裝備時數達1376.5小時,再與回散射的差異量計算後,每年累積劑量為905.3μSv及184.1μSv,皆低於法定輻射作業對一般人之年劑量限度1000μSv,因此,經評估後操作預警裝備人員無需進行個別劑量監測及特殊作業體檢,但依法仍須接受以訓練取代輻射安全證書之訓練,此舉可大幅降低國軍在操作預警裝備對輻射防護作為上的經費支出及減少安全管制作業時間,使部隊有更多時間致力於戰備及訓練本務,以遂行國土防衛之重責大任。
In the CBRN (chemical, biological, radiological and nuclear) environment, the response measures early warning, protection, reconnaissance, decontamination, and first aid. Among all the measures, early warning is the most important of all. While facing the so-called poor man’s atomic bomb-chemical warfare agents, troops in the front line rely heavily on alarming equipment as their early warning measures. However, both M8A1 and GID-3 alarming equipment, currently serve in ROC armed forces, are using radioactive materials to ionize incoming gas to detect chemical warfare agents and chemical substances. The ionizing radiation generated by the radioactive materials can be a potential harm for the alarming equipment operators. Thus, we must measure and assess their radiation doses to ensure operators’ safety. This study uses optically stimulated luminescence dosimeters (OSLDs) which are placed on the surface of equipment and in the storage unit to measure the cumulative dose over 2000 hours, which is the annual legal working hours in Taiwan. Also, all the annual military routine activities that require alarm equipment to be operated for long hours such as unit trainings, professional expertise trainings, evaluations, military exercise, and equipment maintenance are considered and the total operation hours to make sure that operators are in the safe environment. After continuously monitoring M8A1 and GID-3 for 2000 hours, the average dose rates of two equipments are 0.59 μSv/h and 0.12 μSv/h respectively. Since the total operation time of the annual military routine activities is 1376.5 hours, annual cumulative doses for the operators are 905.3 μSv and 184.1 μSv, which are lower than the legal annual dose limit (1000 μSv). Hence, there is no need to implement special medical examinations or individual radiation dose monitoring. In conclusion, both M8A1 and GID-3 alarming equipment are safe enough for operators to implement in various annual military routine trainings.
摘要 i
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 5
2-1 化生放核新型態作戰 5
2-2 毒氣警報器使用態樣分析及偵測原理介紹 7
2-2-1 M8A1毒氣警報器 7
2-2-2 GID-3化學警報器 10
2-3 輻射的健康危害與生物效應 13
2-4 游離輻射管制標準 15
2-5 人員劑量監測與劑量計種類 25
2-5-1 膠片劑量計 26
2-5-2 熱發光劑量計 27
2-5-3 光刺激發光劑量計 28
2-6 劑量計應用於劑量評估作業 32
2-7 壓克力假體運用於輻射劑量評估 36
第三章 研究方法 41
3-1 研究架構 41
3-2 研究設備 42
3-3 實驗方法 44
3-3-1 劑量計歸零 44
3-3-2 再現性試驗 46
3-3-3 劑量計設置規劃 50
第四章 結果與討論 58
4-1 再現性試驗結果 58
4-2 劑量計數據分析 61
4-3 曝露量估算 66
4-4 操作毒氣警報器時數分析 69
4-5 體外輻射劑量分析 70
第五章 結論與建議 75
5-1 結論 75
5-2 建議 76
參考文獻 77
附錄一 計讀原始數據 83
附錄二 部隊訓練課表 85
Alothmany N., Jiman1 A., Molla, N. I., Natto H., Tayeb M., Nadwi F., Yusuf M., Saoudi A., Mail N., Alothmany D., Khafaji M.A., & Kinsara A.A., Characterization of optically stimulated luminescence for assessment of breast doses in mammography screening, Radioprotection, Vol. 51(1), pp 51-58, (2016)
ARPANSA, Code for radiation protection in planned exposure situations radiation protection series C-1, Australian Radiation Protection Nuclear Safety Agency publications, (2020)
BfS, Radiation protection ordinance, Bundesamt für Strahlenschutz (2018)
Brletich, N. R., Waters, M. J., Bowen, G. W., & Tracy, M. F., Worldwide chemical detection equipment handbook, Chemical and Biological Defense Information Analysis Center (CBIAC). (1995)
Galella, E., Jennings, S., Srikoti, M., & Bonasso, E. Cleaning verification: method development and validation using ion mobility spectrometry, Pharmaceutical Technology, Vol. 33(7), pp 60-63. (2009)
HSE, The ionising radiation regulations 2017, Health and Safety Executive (2017)
Jursinic, P. A., Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Medical physics, Vol. 34(12), pp 4594-4604, (2007)
Kobayashi, I., Okazaki, T., Yajima, K., & Yasuda, H, Environmental radiation dosimetry by the small OSL reader, NUCLEAR SCIENCE and TECHNOLOGY, Vol. 3, pp 79-81, (2012)
Kamwang, N., Rungseesumran, T., Saengchantr, D., Monthonwattana, S., & Pungkun, V., Effect of the scattering radiation in air and two type of slap phantom between PMMA and the ISO water phantom for personal dosimeters calibration, Journal of Physics: Conference Series. Vol. 860(1), (2017)
Landauer, Inc. USA, microStarTM User Manual, (2007)
Lauridsen, B., Table of exposure rate constants and dose equivalent rate constants, Risø National Laboratory, (1982)
Meye, P. O., Schandorf, C., & Ndong, R. O., Reader quality control tests, dose algorithm comparison, and signal depletion of optically stimulated luminescence dosimetry systems used for individual monitoring: A case of the dosimetry system of the national individual monitoring service in Gabon. Radiation Protection and Environment, Vol. 41(2), pp 88, (2018).
Nur, K. Z., Jalal, N. A., Ahmad, B. A. K., Faizal, A. A. R., & Ibrahim, S., Environmental dose mapping at raymintex plant area using 3 types of OSL dosimeter, Nuclear Malaysia RnD Seminar Conference, (2016)
Singh, V. P., Badiger, N. M., & Bihari, R. R., Backscattering factor for some personal dosimeters and impact on Hp(10), Radioprotection, Vol. 48(2), pp 243-251, (2013)
Smiths Detection Ltd, Workshop Maintenance Manual, (2004)
Solon, L. R., & Blatz H., Effect of body back scatter on pocket dosimeters and atomic energy commission-health and safety laboratory film badges Vol. 4640.,Health and Safety Laboratory-New York Operations Office. (1955)
Unger, L. M., & Trubey, D. K., Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment, No. ORNL/RSIC-45/Rev. 1., Oak Ridge National Lab. (1982)
U.S. Department of the Army, The army radiation safety program (2015)
U.S. Department of Defense, Management of equipment contaminated with depleted uranium or radioactive commodities, Army Regulation 700-48, (2002)
U.S. Department of the Navy, Radiation health protection manual, NAVMED P-5055, (2018)
許芳裕,黃奕祥,游澄清,蔡清立,趙君行,「清華大學銫-137 劑量校正場之空間劑量評估」,加馬,第37期,35-44頁,2006年。
電子全文 電子全文(網際網路公開日期:20230731)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔