|
[1] M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb and R. R. Anderson, “In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast.” Journal of Investigative Dermatology 104(6), 946-952 (1995). [2] W. Denk, J. H. Strickler and W. W. Webb, “Two-photon laser scanning fluorescence microscopy.” Science 248(4951), 73-76 (1990). [3] W. L. Peticolas, J. P. Goldsborough and K. E. Reickhoff, “Physical Review Letters.” 10(2), 43 (1963). [4] M. W. Davidson and M. Abramowitz, “Optical microscopy.” Encyclopedia of imaging science and technology 2, 1106-1141 (2002). [5] D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra.” Physical Review 136(4A) (1964). [6] S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy.” Optics letters 19, 11 (1994). [7] T. A. Klar, S. Jakobs, M. Dyba, A. Egner and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission.” PNAS 97(15), 8206-8210 (2000). [8] S. W. Hell, “Far-field optical nanoscopy.” Science 316(5828), 1153-1158 (2007) [9] K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis.” Nature 440(7086), 935-939 (2006). [10] B. Hein, K. I. Willig and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell.” Proceedings of the National Academy of Sciences 105(38), 14271-14276 (2008). [11] U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell and T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy.” Proceedings of the National Academy of Sciences 105(48), 18982-18987 (2008). [12] M. J. Rust, M. Bates and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).” Nature methods 3, 793-795 (2006). [13] B. Huang, W. Wang, M. Bates and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.” Science 319, 810-813 (2008). [14] M. Bates, S. A. Jones and X. Zhuang, “ Stochastic optical reconstruction microscopy (STORM): a method for superresolution fluorescence imaging.” Cold Spring Harbor Protocols (2013). [15] R. Heintzmann, T. M. Jovin and C. Cremer, “Saturated patterned excitation microscopy—a concept for optical resolution improvement.” JOSA A 19, 1599-1609 (2002). [16] M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.” Journal of microscopy 198(2), 82-87 (2000). [17] M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution.” Proceedings of the National Academy of Sciences 102(37), 13081-13086 (2005). [18] W. R. Zipfel, R. M. Williams and Watt W Webb, “Nonlinear magic: multiphoton microscopy in the biosciences.” Nature Biotechnologyvolume 21, 1369-1377 (2003). [19] C. H. Yeh, “Two-photon scanning structured illumination Microscopy.” National Central University (2016). [20] C. H. Yeh, C. Z. Tan, C. H. Cheng, J.T. Hung and S. Y. Chen, “Improving resolution of second harmonic generation microscopy via scanning structured illumination.” Biomedical Optics Express 9(12), 6081-6090 (2018). [21] R. W. Boyed, “Nonlinear optics.” Academic press. (2003). [22] J. A. Squier, M. Müller, G. J. Brakenhoff and K. R. Wilson, “Third harmonic generation microscopy.” Optics Express 3(9), 315-324 (1998). [23] G. Veres, S. Matsumoto, Y. Nabekawa and K. Midorikawa, “Enhancement of third-harmonic generationin absorbing media.” Applied physics letters 81(20), 3714-3716 (2002). [24] https://www.olympus-lifescience.com/en/microscope-resource/primer/java/jablonski/jabintro/ [25] S. W. Hell and K. Matthias, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit.” Applied physics B 60, 5 (1995). [26] J. W. Goodman, Introduction to Fourier Optics, third edtion (Robert & Company Publishers, Unitied States, 2005). [27] R. Heintzmann, T. M. Jovin and C. Cremer, “Saturated patterned excitation microscopy—a concept for optical resolution improvement.” JOSA A 19(8), 1599-1609 (2002). [28] R. Heintzmann, “Saturated patterned excitation microscopy with two-dimensional excitation patterns.” Micron 34(6-7), 283-291 (2003). [29] O. Svelto, Principles of Lasers, fifth edtion (Springer Science & Business Media, 1976). [30] S. Torbjorn, “Pattern generator.” U.S. Patent 6, 747-783. (2004). [31] D. Débarre, E. J. Botcherby, M. J. Booth and T. Wilson, “Adaptive optics for structured illumination microscopy.” Optics express 16(13), 9290-9305 (2008). [32] https://www.researchgate.net/figure/UV-and-PL-spectra-of-piq-2-Ir-BPO-OH-in-CHCl-3_fig6_224405634 [33] H.H. Wu, “Modulation of Third Harmonic Generation Achieved through Ground State Depletion.” National Central University (2016). [34] G. O. Clay, A. C. Millard, C. B. Schaffer, J. A. Au, P. S. Tsai, J. A. Squier and D. Kleinfeld, “Spectroscopy of third-harmonic generation: evidence for resonances in model compounds and ligated hemoglobin.” Journal of the Optical Society of America B 23(5), 932-950 (2006). [35] I. Saytashev, R. Glenn, G. A. Murashova, S. Osseiran, D. Spence, C. L. Evans and M. Dantus, “Multiphoton excited hemoglobin fluorescence and third harmonic generation for non-invasive microscopy of stored blood.” Biomedical Optics Express 7(9), 3449-3460 (2016). [36] R. D. Schaller, J. C. Johnson and R. J. Saykally, “Nonlinear Chemical Imaging Microscopy: Near-Field Third Harmonic Generation Imaging of Human Red Blood Cells.” Analytical chemistry 72(21), 5361-5364 (2000). [37] S. Prahl, “Optical absorption of hemoglobin.” Oregon Medical Laser Center, http://omlc.org/spectra/hemoglobin/index.html (1999). [38] Olafson, B. Duane and W. A. Goddard, “Molecular description of dioxygen bonding in hemoglobin.” Proceedings of the National Academy of Sciences 74(4), 1315-1319 (1977). [39] D. A. Chernoff, R. M. Hochstrasser and A. W. Steele, “Geminate recombination of O2 and hemoglobin.” Proceedings of the National Academy of Sciences 77(10), 5606-5610 (1980). [40] H. Suna and N. Hua, “Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes.” Biophysical Chemistry 110, 297-308 (2004). [41] J. B. Matthew, G. I. H. Hanania and F. R. N. Gurd, “Electrostatic effects in hemoglobin – hydrogen – ion equilibria in human deoxyhemoglobin and oxyhemoglobin-A.” Biochemistry 18, 1919-1928 (1979). [42] A. Vogel, A. Dlugos, R. Nuffer and R. Birngruber, “Optical properties of human sclera, and their consequences for transscleral laser applications.” Lasers in surgery and medicine 11(4), 331-340 (1991). [43] S. Y. Chen, S. U. Chen, H. Y. Wu, W. J. Lee, Y. H. Liao and C. K. Sun, “In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy.” IEEE Journal of Selected Topics in Quantum Electronics 16(3), 478-492 (2010). [44] S. Y. Chen, H. Y. Wu and C. K. Sun, “In vivo harmonic generation biopsy of human skin.” Journal of Biomedical Optics 14(6), 060505 (2009). [45] C. C. Felix, J. S. Hyde and R. C. Sealy. “Photoreactions of melanin: A new transient species and evidence for triplet state involvement.” Biochemical and Biophysical Research Communications 88(2), 456-461 (1979). [46] T. Y. Su, C. S. Liao, C. Y. Yang, G. Y. Zhuo, S. Y. Chen and S. W. Chu, “On the possible origin of bulk third harmonic generation in skin cells.” Applied Physics Letters 99(11), 113702 (2011). [47] A. Arthur, “Acceleration and trapping of particles by radiation pressure.” Physical review letters 24(4), 156 (1970).
|