跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林中肯
研究生(外文):Chung-Ken Lin
論文名稱:以時域有限差分法探討有機發光二極體之光學特性
論文名稱(外文):Finite-Difference Time-Domain for Optical Properties of Organic Light Emitting Devices
指導教授:張瑞芬張瑞芬引用關係
指導教授(外文):Jui-Fen Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:74
中文關鍵詞:時域有限差分法有機發光二極體廣角干涉效應
外文關鍵詞:Finite-Difference Time-Domain methodorganic light emitting devicewide-angle interference
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要以時域有限差分法模擬有機發光二極體的光學頻譜。我們透過校正頻譜修正近場至遠場轉換所造成的模擬誤差,讓時域有限差分法模擬的遠場零度角光譜與即時性多角度光譜所量測的零度角光譜相符,以此証明時域有限差分法確實可模擬有機發光二極體的光學光譜。我們探討不同膜層厚度模擬Alq3元件遠場光譜,解釋在微共振腔中,廣角干涉效應對光譜所造成的影響,並運用時域有限差分法驗證此效應。在廣角干涉效應中,電偶極位置至金屬電極表面的距離(Lrec)為一個非常重要的參數,透過時域有限差分法模擬,我們推測電子電洞復合位置所產生的電偶極,應當為一區域範圍厚度復合。
In this thesis, the finite-difference time-domain method is used to simulate the optical spectrum of organic light-emitting diodes. We correct the simulation error caused by near-field to far-field conversion by correcting spectrum, so that the far-field zero-degree angle spectrum is consistent with the finite-difference time-domain method and one-snap multi-angle spectroscopy optical system(OSAS). This proves that the finite-difference time-domain method can indeed simulate the optical spectrum of organic light-emitting diodes. We demonstrate the far-field spectra of simulated Alq3 components with different film thicknesses, explain the wide-angle interference effects on the weak micro-cavity effect, and verify this effect using the finite-difference time-domain method. In the wide-angle interference effect, the distance from the position of the electric dipole to the surface of the metal electrode(Lrec) is a very important parameter. Through simulation of the finite-difference time-domain method, we speculate that the electric dipole generated by the composite position of the electron and the hole should be in a region range.
中文摘要 ⅰ
英文摘要 ⅱ
謝誌 ⅲ
目錄 ⅳ
圖目錄 ⅵ
表目錄 ⅸ
一、 緒論 1
1.1 前言 1
1.2 時域有限差分法 2
1.3 研究動機與目的 3
二、 基礎理論 5
2.1 有機發光二極體 5
2.1.1 有機發光二極體結構與原理 5
2.1.2 電荷注入限制電流 6
2.1.3 空間電荷限制電流 8
2.1.4 發光機制 8
2.2 時域有限差分法的原理 11
2.2.1 有限差分法 11
2.2.2 馬克士威方程組 12
2.2.3 一維自由空間FDTD演算法 14
2.2.4 三維FDTD演算法 15
2.2.5 穩定性標準 20
2.3 近場到遠場的轉換 20
2.3.1 惠更思表面 21
2.3.2 頻域NF-FF轉換 23
2.4 改變遠場折射率 28
2.5 朗伯光源與朗伯餘旋定理 29
三、 實驗方法與結構 31
3.1 實驗與量測儀器 31
3.1.1 超音波震盪器 31
3.1.2 熱蒸鍍機 31
3.1.3 手套箱 32
3.1.4 半導體參數分析儀 33
3.1.5 光纖量測系統 33
3.1.6 即時性多角度光譜量測系統 35
3.2 有機發光二極體之製程與結構 35
四、 實驗結果與討論 38
4.1 NF-FF校正頻譜 38
4.2 Alq3單層膜光致發光 39
4.3 Alq3元件電致發光 40
4.3.1 零度角光譜 42
4.3.2 0∘,30∘,60∘光譜 42
4.3.3 總光強度分佈圖 43
4.4 不同厚度的Alq3與NPB膜層對元件電致發光影響 43
4.5 Alq3膜層厚度對元件電致發光影響 48
五、 結論與未來展望 53
參考文獻 54
[1] R. Sprengard et al., “OLED devices for signage applications - A review of recent advances and remaining challenges,” In Proceedings of SPIE - The International Society for Optical Engineering, vol. 5519, pp. 173-183, 2000.
[2] T. Tsujimura, OLED Display Fundamentals and Applications, 2017, ISBN 978-111-91-8731-8.
[3] H. W. Chen et al., “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl., vol. 7, no. 17168, pp. 1-11, Mar. 2018.
[4] M. Pope et al., “Electroluminescence in Organic Crystals,” J. Chem. Phys., vol. 38, no. 8, pp. 2042-2043, Dec. 1962.
[5] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, no. 12, pp. 913-914, May 1987.
[6] J. H. Burroughes et al., “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, pp. 539-541, Oct. 1990.
[7] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas Propag., vol. 14, no. 3, pp. 302-306, May 1966.
[8] A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat., vol. EMC-22, no. 3, pp. 191-202, Aug. 1980.
[9] T. Matsushima et al., “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett., vol. 91, no. 253504, pp. 1-3, Nov. 2007.
[10] H. Lee et al., “The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl- 4,4′-diamine interfaces,” Appl. Phys. Lett., vol. 93, no. 043308, pp. 1-3, July 2008.
[11] L. S. Hung et al., “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Appl. Phys. Lett., vol. 70, no. 152, pp. 1-3, Jan. 1997.
[12] J. G. Simmons, “Richardson-Schottky Effect in Solids,” Phys. Rev. Lett., vol. 15, no. 967, pp. 967-968, Dec. 1965.
[13] P. Vacca et al., “The Relation between the Electrical, Chemical, and Morphological Properties of Indium−Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance,” J. Phys. Chem. C, vol. 111, no. 46, pp. 17404-17408, Nov. 2007.
[14] R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” In Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 119, pp. 173-181, May 1928.
[15] A. J. Heeger et al., “Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling,” Synth. Met., vol. 67, no.1-3, pp. 23-29, Nov. 1994.
[16] C. E. Small et al., “Origin of Enhanced Hole Injection in Inverted Organic Devices with Electron Accepting Interlayerg,” Adv. Funct. Mater., vol. 22, no. 15, pp. 3261-3266, Apr. 2012.
[17] W. Brütting, Physics of Organic Semiconductors, May 2005, ISBN 978-352-74-0550-3.
[18] F. B. Hildebrand, Finite-difference Equations and Simulations, 1968, ISBN 978-013-31-7230-0.
[19] A. Taflove and M. E. Brodwin, ” Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations,” IEEE Trans. Microwave Theory Tech., vol. 23, no. 8, pp. 623-630, Aug. 1975.
[20] C. A. Balanis, Advanced Engineering Electromagnetics, Jan. 2012, ISBN 978-047-05-8948-9.
[21] C. L. Mulder et al., “Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission,” Appl. Phys. Lett., vol. 90, no. 211109, pp. 1-3, May 2007.
[22] A. Chutinan et al., ” Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron., vol. 6, no. 1, pp. 3-9, Feb. 2005.
[23] J. Y. Kim et al., “Analysis of Out-Coupling Mechanism in Organic Light-Emitting Diodes,” IEEE Photonics Technol. Lett., vol. 26, no. 9, pp. 896-899, May 2014.
[24] S. Nowy et al., “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys., vol. 104, no. 12, pp. 123109, Dec. 2008.
[25] P. A. Hobson et al., “The Role of Surface Plasmons in Organic Light-Emitting Diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 8, no. 2, pp. 378-386, Apr. 2002.
[26] H. Park et al., “Electron mobility in tris(8-hydroxyquinoline)-aluminum (Alq3) films by transient electroluminescence from single layer organic light emitting diodes,” Appl. Phys. Lett., vol. 90, no. 20, pp. 202103, May 2007.
[27] T. Y. Chu and O. K. Song, ” Hole mobility of N,N′-bis(naphthalen-1-yl-N,N′-bis(phenyl) benzidine investigated by using space-charge-limited currents,” Appl. Phys. Lett., vol. 90, no. 20, pp. 203512, May 2007.
[28] P. C. Yeh, ” Study toward High-Efficiency p-i-n White Organic Light-Emitting Diodes with Tandem Structure,” July 2017.
[29] J. Lee et al., “Cavity effects on light extraction in organic light emitting devices,” Appl. Phys. Lett., vol. 32, no. 3, pp. 033303, Oct. 2006.
[30] B. Jiao et al., “Improvement of light extraction in organic light-emitting diodes using a corrugated microcavity,” Opt. Express, vol. 23, no. 4, pp. 4055-4064, Feb. 2015.
[31] K. A. Neyts, ”Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A:, vol. 15, no. 4, pp. 962-971, Apr. 1998.
[32] D. Poelman et al., “Spectral shifts in thin film electroluminescent devices: an interference effect,” J. Phys. D: Appl. Phys., vol. 25, no. 6, pp. 1010-1013, 1992.
[33] S. K. So and W. K. Choi, ”Interference effects in bilayer organic light-emitting diodes,” Appl. Phys. Lett., vol. 74, no. 14, pp. 1939-1941, Apr. 1999.
[34] J. Kalinowski et al., “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys., vol. 94, no. 12, pp. 7764-7767, Dec. 2003.
[35] E. Aminaka et al., ”Effect of layered structures on the location of emissive regions in organic electroluminescent devices,” J. Appl. Phys., vol. 79, no. 11, pp. 8808-8815, June 1996.
電子全文 電子全文(網際網路公開日期:20250114)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top