(3.236.214.19) 您好!臺灣時間:2021/05/10 04:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇文銓
研究生(外文):Wen-Chiuan Su
論文名稱:以非週期晶疇極化反轉鈦擴散鈮酸鋰波導晶片產生偏振糾纏光子對
論文名稱(外文):Nonperiodic optical superlattice lithium niobate waveguides for the generation of polarization entanglement
指導教授:陳彥宏陳彥宏引用關係
指導教授(外文):Yen-Hung Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:57
中文關鍵詞:鈮酸鋰非週期波導偏振糾纏量子光源
外文關鍵詞:lithium niobatenonperiodicwaveguidepolarization entanglementquantum light source
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文順利開發出了基於非週期晶疇極化反轉(NPPLN)鈦擴散鈮酸鋰波導晶片的非簡併偏振相關光子對光源,用基因演算法來優化非週期結構中所對應到的自發參量下轉換過程(SPDC)並使其達到最大與相等效率值,我們首先模擬出產生雙光子對的自發參量下轉換光源其特性,之後製作出此晶片並進行量測。
我們用古典的和頻實驗(SFG)來量測我們的NPPLN波導SPDC光源,我們發現峰值波長會隨著溫度改變出現藍移的現象,其值為0.23 nm/℃,與我們模擬的結果(0.25 nm/℃)相符合。在使用頻寬更寬的雷射進行實驗後可以在光譜上發現兩個峰值,當實驗溫度為220℃時,我們量測到的兩個峰值波長分別為1570.17 nm與1580.71 nm,其頻寬分別為0.30 nm與0.31 nm。從汞浦光能量與訊號光能量的關係為一二次曲線可以說明這是一個二次非線性過程。
在SFG量測中可以看到兩道強度相等的直線代表了非週期結構中所包含的兩個主要的type-II相位匹配,從此結果可以預測出有兩對偏振糾纏光子對波長分別為1566 nm與1585 nm,並且透過SFG對SPDC的轉換原理可以知道是透過汞浦光波長為787.8 nm來產生。在未來我們可以在同一片晶片中透過在SPDC後段加入一段結構稱為電光模態耦合器(EOPMC)來更進一步消除因為雙折射晶體所造成的光子對間的時間延遲。
In this study, we develop a nondegenerate polarization-correlated photon-pair source based on titanium-diffused nonperiodically-poled lithium niobate (NPPLN) waveguides. The nonperiodic domains are optimized using a genetic algorithm to maximize and equalize efficiencies of the respective spontaneous parametric down-conversion processes. We have first simulated the performance of the novel NPPLN spontaneous parametric down conversion (SPDC) source for dual photon-pair generation and then fabricated and characterized the device.
We characterize the NPPLN waveguide SPDC source by means of classical sum-frequency generation (SFG) measurements. We found the peak wavelengths will have a blue shift of 0.23 nm/℃ with temperature tuning, which agrees well with the simulation result (0.25 nm/℃). We can see two peaks in the spectrum when we using the wider wavelength range laser source. At 220oC, we measured dual spectral peaks at 1570.17 nm and 1580.71 nm with bandwidths of 0.30 nm and 0.31 nm, respectively. The measured relationship between the pump power and signal power is a quadratic curve which is a signature of 2nd order nonlinear process.
In the measurement, two SFG maxima of equal amplitude corresponding to the two main components of the dual type-II quasi-phase-matching conditions can be observed, from which we can predict that there will be two polarization entangled photon pairs with wavelengths at 1566 nm and 1585 nm, respectively, generated by a pump at 787.8 nm according to the correspondence theory between SFG and SPDC. In the future, we can add a structure called electro-optic polarization mode converter in the same chip with the SPDC source to further eliminate the time delay between the photon pairs caused by the birefringence of the crystal.
摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VII
一、 緒論 1
1-1. 積體光學簡介 1
1-2. 量子光學的簡介與發展 1
1-3. 研究動機 3
1-4. 內容概要 3
二、 實驗原理 4
2-1. 自發參量下轉換 4
2-2. 鈮酸鋰晶體之晶疇極化反轉 7
2-3. 基因演算法 8
三、模擬結果 11
3-1. 晶片設計概念 11
3-2. 基因演算法流程 13
3-3. 基因演算法的結果 17
3-4. 晶片設計 18
四、晶片製作 19
4-1. 直波導製程 19
4-2. 極化反轉製程 21
4-3. 切割與拋光 25
五、實驗結果與分析 26
5-1. 空間模態量測 26
5-2. 二次諧振波量測 29
5-3. 和頻產生量測 35
5-4. SFG到SPDC轉換模擬 39
六、結論與未來計畫 41
6-1. 結論 41
6-2. 未來計畫 41
參考文獻 44
1. Miller, S.E., Integrated optics: An introduction. The Bell System Technical Journal, 1969. 48(7): p. 2059-2069.
2. Arute, F., et al., Quantum supremacy using a programmable superconducting processor. Nature, 2019. 574(7779): p. 505-510.
3. Ekert, A.K., Quantum cryptography based on Bell's theorem. Physical Review Letters, 1991. 67(6): p. 661-663.
4. Bennett, C.H., et al., Experimental quantum cryptography. Journal of Cryptology, 1992. 5(1): p. 3-28.
5. Burnham, D.C. and D.L. Weinberg, Observation of Simultaneity in Parametric Production of Optical Photon Pairs. Physical Review Letters, 1970. 25(2): p. 84-87.
6. Shi, B.-S. and A. Tomita, Highly efficient generation of pulsed photon pairs with bulk periodically poled potassium titanyl phosphate. Journal of the Optical Society of America B, 2004. 21(12): p. 2081-2084.
7. Martin, A., et al., A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength. New Journal of Physics, 2010. 12(10): p. 103005.
8. Ueno, W., et al., Entangled photon generation in two-period quasi-phase-matched parametric down-conversion. Optics Express, 2012. 20(5): p. 5508-5517.
9. 楊詩遠, 電光非週期性晶疇極化反轉鈮酸鋰定向耦合器. 中央大學光電所碩士論文, 2017.
10. 林學汕, 以非週期性晶疇極化反轉鈮酸鋰作為電光可調腔內泵浦多波長光參量振盪器之研究. 中央大學光電所碩士論文, 2019.
11. Sutherland, R.L., Handbook of Nonlinear Optics. 2003.
12. 呂學璁, 以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器. 2010.
13. Miyazawa, S., Ferroelectric domain inversion in Ti‐diffused LiNbO3 optical waveguide. Journal of Applied Physics, 1979. 50(7): p. 4599-4603.
14. Feng, D., et al., Enhancement of second‐harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Applied Physics Letters, 1980. 37(7): p. 607-609.
15. Webjorn, J., F. Laurell, and G. Arvidsson, Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide. IEEE Photonics Technology Letters, 1989. 1(10): p. 316-318.
16. Nutt, A.C.G., V. Gopalan, and M.C. Gupta, Domain inversion in LiNbO3 using direct electron‐beam writing. Applied Physics Letters, 1992. 60(23): p. 2828-2830.
17. Agronin, A., Y. Rosenwaks, and G. Rosenman, Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy. Applied Physics Letters, 2004. 85(3): p. 452-454.
18. Booker, L.B., D.E. Goldberg, and J.H. Holland, Classifier systems and genetic algorithms. Artificial Intelligence, 1989. 40(1): p. 235-282.
19. Goldberg, D., B. E. A Korb, and K. Deb, Messy Genetic Algorithms: Motivation, Analysis, and First Results. Complex Systems, 1989. 3.
20. Goodman, J.W., Introduction to Fourier Optics. 2005.
21. Gu, B.-Y., Y. Zhang, and B.-Z. Dong, Investigations of harmonic generations in aperiodic optical superlattices. Journal of Applied Physics, 2000. 87(11): p. 7629-7637.
22. Sellmeier, W., Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien. Annalen der Physik, 1872. 223(11): p. 386-403.
23. Jundt, D.H., Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate. Optics Letters, 1997. 22(20): p. 1553-1555.
24. Hansen, A.K., et al., Concept for power scaling second harmonic generation using a cascade of nonlinear crystals. Optics Express, 2015. 23(12): p. 15921-15934.
25. Lenzini, F., et al., Direct characterization of a nonlinear photonic circuit’s wave function with laser light. Light: Science & Applications, 2018. 7(1): p. 17143-17143.
電子全文 電子全文(網際網路公開日期:20210901)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔