(18.207.253.100) 您好!臺灣時間:2021/05/06 07:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝佳宏
研究生(外文):Chia-Hung Hsieh
論文名稱:以低溫製程製作厚膜螢光玻璃用於雷射白光之研究
論文名稱(外文):Research on Making Thick Film Phosphor Glass for Laser White Light by Low Temperature Process
指導教授:張榮森張榮森引用關係
指導教授(外文):Rong-Seng Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:60
中文關鍵詞:色溫光形粒徑固含量
外文關鍵詞:Solid Content
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
2014年TI德州儀器開發出藍光雷射加上螢光粉的組合光源用於投影機後,雷射螢光玻璃(PIG, Phosphor in Glass)成為重要的光學元件;燒結PIG製作上的瓶頸有:製程繁複、結構難控制、特殊形狀製作困難、加工成本高、高溫燒結耗能、光效率不佳等造成應用上的侷限。
本論文以粒徑15μm的YAG 550nm螢光粉,以低溫反應製程製作雷射螢光玻璃LT-PIG,以2W波長450nm的藍光雷射照射,在穿透厚度0.49mm後,色溫維持在4300K以上,發光角可達150°。(如表七、照射單一顆粒時分析所得到的參數表)
整體的優點有:
(1)大散光角度;傳統PIG出光角小於90°需靠透鏡散光,LT-PIG不需靠透
鏡,出光角度就可達150°。
(2)低溫製程簡單、快速、精準、節能、低成本;可以印刷、沉積、鑄模、
模壓等多元工法製作。
(3)無機玻璃材料可耐400°C以上高溫;無黃化及質變問題。
(4)容易製作曲面、特殊形狀及製作在透鏡表面等應用。
(5)光效率高;內部均勻混合結構,無須經過透鏡即可形成漫射效果得到大
的出光角。
(6)縮小鏡頭;LT-PIG螢光膜可以做在透鏡表面,收斂出光角度不會因光
程或鏡頭收光尺寸不夠大產生的光損耗,可讓鏡頭尺寸縮到最小。
(7)光源參數調制容易;配合入射藍光強度,調整螢光粉的粒徑、膜厚及固
含量比例很容易可控制色溫、出光角度、光形、光強度。
綜上所述LT-PIG已具備完整實用條件,可以改善現有PIG瓶頸,再配合相關結構設計將是理想的光源選擇。
Abstract

In 2014, TI Texas Instruments developed a combination of blue laser and phosphor powder as a light source for projectors. Laser phosphor glass (PIG, Phosphor in Glass) became an important optical component; the bottlenecks in sintered PIG production are: The complicated process, difficult to control the structure, difficult to manufacture special shapes, high processing cost, high-temperature sintering energy consumption, and poor optical efficiency have caused limitations in applications.

In this paper, YAG 550nm phosphor powder with a particle size of 15μm is used to make LT-PIG laser fluorescent glass with a low-temperature reaction process. It is irradiated with a blue laser beam with a wavelength of 2W and 450nm. After penetrating a thickness of 0.49mm, the color temperature is maintained at 4300K , The luminous angle is above 150°.

The overall advantages are:

(1) Large astigmatism angle; the traditional PIG light angle is less than 90° depends on the lens astigmatism, LT-PIG does not need the lens, the light angle can reach 150°.
(2) The low-temperature process is simple, fast, accurate, energy-saving, and low-cost; it can be produced by multiple methods such as printing, deposition, casting, and molding.
(3) Inorganic glass materials can withstand high temperatures above 400°C; no yellowing and qualitative problems.
(4) It is easy to make curved surface, special shape and make on lens surface and other applications.
(5) High light efficiency; the internal uniform mixing structure can form a diffusion effect without going through the lens to obtain a large light angle.
(6) Reduce the lens; LT-PIG fluorescent film can be made on the surface of the lens, and the convergence angle of the light will not be caused by the optical loss due to the optical path or the lens receiving size is not large enough, which can minimize the size of the lens.
(7) It is easy to modulate the parameters of the light source; it is easy to adjust the particle size, film thickness and solid content ratio of the phosphor according to the intensity of the incident blue light. It is easy to control the color temperature, light angle, light shape and light intensity.

In summary , LT-PIG already has complete practical conditions, which can improve the existing PIG bottleneck, and then cooperate with related structural design will be the ideal light source choice.
目錄
摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究貢獻 2
1.3 研究動機 6
1.4 研究目的 7
1.4.1 汽車產業加速雷射白光技術發展 8
第二章 研究內容與方法 10
2.1 研究內容 10
2.2 研究方法 14
2.2.1 選定量測標準 14
2.2.2 數值分析 16
第三章 理論 18
3.1 半導體雷射封裝製程 18
3.2 螢光玻璃特性 20
3.2.1 可靠度高 21
3.2.2 色溫均勻性 21
3.2.3 螢光體孔隙率影響 21
3.3 出光角的分析 22
3.4 由材料結構幾何分析,吸收與輻射相關的面積比例 23
3.5 推算粒徑與單位圓直徑比值與固含量(Solid Content)關係 25
3.6 光能量傳遞 26
第四章 實驗 27
4.1 實驗設備 27
4.2 實驗結果 28
4.2.1 光衰與色溫分析 28
4.2.2固含量(Solid Content)與厚度對光效率的分析 29
4.2.3光入射角度影響 31
4.2.4厚膜做在透鏡表面及特殊角度應用 31
4.2.5成型 33
第五章 結論與未來展望 34
5.1 結論 34
5.2 未來展望 35
參考文獻 36
附錄(附件) 41
參考文獻
[1] SiC Ceramics Substrate(Hitaceram SC-101)
[2] 資料來源:光學技術於車用照明、資訊顯示與生理感測之趨勢與發展介紹文/車輛中心(ARTC) 施淳耀、許日滔、鄭舜文
https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_536567195.pdf
[3] 資料來源:光學技術於車用照明、資訊顯示與生理感測之趨勢與發展介紹文/車輛中心(ARTC) 施淳耀、許日滔、鄭舜文
https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_536567195.pdf
[4] 資料來源: Laser & Photonics Reviews:激光驱动实现超高亮度固态照明白光光源2019年11月5日 by materialsviewschina
https://www.materialsviewschina.com/2019/11/40947/
[5] 資料來源:廠商提供原料規格
[6] 照片來源:原料商提供提供
[7] TAGUCHI T. Present status of white LED lighting technologies in
Japan. Journal of Light & Visual Environment, 2003, 27(3):
131–139.
344 无 机 材 料 学 报 第32 卷
[8] YE S, XIAO F, PAN Y X, et al. Phosphors in phosphor-converted
white light-emitting diodes: recent advances in materials, technique
and properties. Materials Science and Engineering: R:
Reports, 2010, 71: 1–34.
[9] XIE R J, HIROSAKI N. Silicon-based oxynitride and nitride
phosphors for white LEDs-a review. Science and Technology of
Advanced Materials, 2007, 8: 588–600.
[10] NAKAMURA S, FASOL G. The Blue Laser Diode: GaN Based
Light Emitters and Lasers. Springer, Berlin, 1997.
[11] FERGUSON I T, FUJITA S, CARRANO J C, et al. YAG glassceramic
phosphor for white LED (I): background and development.
Proceedings of SPIE, 2005, 5941: 594111.
[12] FERGUSON I T, TANABE S, CARRANO J C, et al. YAG
glass-ceramic phosphor for white LED (II): Lμminescence characteristics.
Proceedings of SPIE, 2005, 5941: 594112.
[13] FUJITA S, TANABE S. Thermal quenching of Ce3+: Y3Al5O12
glass- ceramic phosphor. Japanese Journal of Applied Physics,
2009, 48: 120210.

[14] FUJITA S, ΜMAYAHARA Y, TANABE S. Influence of light scattering
on lμminous efficacy in Ce: YAG glass-ceramic phosphor.
Journal of the Ceramic Society of Japan, 2010, 118(2): 128–131.
[15] WOODROW S. Remote Phosphor Brings Higher Efficacy to Area
Lighting. LEDs Magazine, April 2013.
[16] CHANG L B, PAN K W, YEN C Y, et al. Comparison of silicone
and spin-on glass packaging materials for light-emitting diode encapsulation.
Thin Solid Films, 2014, 570: 496–499.
[17] XIAO Y H, LV Y J, XU Y X, et al. The difference of lμminous
performance between traditional phosphor packaging LED and
remote phosphor LED. Chinese Journal of Lμminescence, 2014,
35(1): 66–72.
[18] CHEN D Q, XIANG W D, LIANG X J, et al. Advances in transparent
glass-ceramic phosphors for white light-emitting diodes-a
review. Journal of the European Ceramic Society, 2015, 35(3):
859–869.
[19] SAKΜMA K, OMICHI K, KIMURA N, et al. Warm-white
light-emitting diode with yellowish orange SiAlON ceramic phosphor.
Optics Letters, 2004, 29: 2001–2003.
[20] LEE J S, ARUNKΜMAR P, KIM S, et al. Smart design to resolve
spectral overlapping of phosphor-in-glass for high-powered remote
type white light-emitting devices. Optics Letters, 2014, 39:
762–765.
[21] SNOWDON S C. Light Scattering by Small Particles: by H. C. van
de Hulst. New York, John Wiley and Sons, Inc. Journal of the
Franklin Institute, 1957, 264: 248–249.
[22] LEE Y K, LEE J S, HEO J, et al. Phosphor in glasses with Pb-free
silicate glass powders as robust color-converting materials for
white LED applications. Optics Letters, 2012, 37(15): 3276–3278.
[23] KIM C, PARK H A, JANG H W, et al. All-in-one-type organic
light-emitting diodes for color tuning using phosphor in glasses
with Pb-free silicate powders. Current Applied Physics, 2014,
14(12): 1677–1681.
[24] PARK H A, LEE Y K, IM W B, et al. Phosphor in glass with Eu3+
and Pr3+-doped silicate glasses for LED color conversion. Optical
Materials, 2015, 41: 67–70.


[25] LEE Y K, KIM Y H, HEO J, et al. Control of chromaticity by
phosphor in glasses with low temperature sintered silicate glasses
for LED applications. Optics Letters, 2014, 39(14): 4084–4087.
[26] CHEN L Y, CHANG J K, WU Y R, et al. Optical model for novel
glass-based phosphor-converted white light-emitting diodes.
Journal of Display Technology, 2013, 9(6): 441–446.
[27] CHEN L Y, CHENG W C, TSAI C C, et al. High-performance
glass phosphor for white-light-emitting diodes via reduction of
Si-Ce3+: YAG inter-diffusion. Optical Materials Express, 2014,
4(1): 121–128.
[28] TSAI C C. Color rendering index thermal stability improvement of
glass-based phosphor-converted white light-emitting diodes for
solid-state lighting. International Journal of Photoenergy, 2014,
2014: 1–6.
[29] TSAI C C. Thermal aging performance analyses of high color rendering
index of glass-based phosphor-converted white-light-emitting
diode. Ieee Transactions on Device and Materials Reliability, 2015,
15(4): 617–620.
[30] YI S, CHUNG W J, HEO J. Stable and color-tailorable white light
from blue leds using color-converting phosphor-glass composites.
Journal of the American Ceramic Society, 2014, 97(2): 342–345.
[31] LIU G, TIAN Z, CHEN Z, et al. CaAlSiN3:Eu2+ phosphors bonding
with bismuth borate glass for high power light excitation. Optical
Materials, 2015, 40: 63–67.
[32] LEE J S, UNITHRATTIL S, KIM S, et al. Robust moisture and
thermally stable phosphor glass plate for highly unstable sulfide
phosphors in high-power white light-emitting diodes. Optics
Letters, 2013, 38 (17): 3298–3300.
[33] SEGAWA H, OGATA S, HIROSAKI N, et al. Fabrication of
glasses of dispersed yellow oxynitride phosphor for white light
emitting diodes. Optical Materials, 2010, 33(2): 170–175.
[34] SEGAWA H, HIROSAKI N. Europiμm-doped SiAlON and borosilicate
glass composites for white light-emitting diode, Applied
Optics, 2015, 54: 8727–8730.
[35] SEGAWA H, HIROSAKI N, OHKI S, et al. Exploration of metaphosphate
glasses dispersed with Eu-doped SiAlON for white LED
applications. Optical Materials, 2015, 42: 399–405.

[36] MAO Z Y, ZHU Y C, GAN L, et al. Novel white-light-emitting
SiAlON-crystal/glass composite phosphor prepared by facile
strategy for white light-emitting-diode. Materials Letters, 2012, 80:
第4 期 张 瑞, 等: 白光LED 用Phosphor-in-Glass 荧光材料的研究进展 345
63–65.
[37] ZHANG R, LIN H, YU Y L, et al. A new-generation color converter
for high-power white LED: transparent Ce3+: YAG phosphor-
in- glass. Laser & Photonics Reviews, 2014, 8(1): 158–164.
[38] CHEN H, LIN H, XU J, et al. Chromaticity-tunable phosphor-inglass
for long-lifetime high-power warm w-LEDs. J. Mater. Chem.
C, 2015, 3(31): 8080–8089.
[39] LIN Z B, LIN H, XU J, et al. Highly thermal-stable warm w-LED
based on Ce: YAG PiG stacked with a red phosphor layer. Journal
of Alloys and Compounds, 2015, 649: 661–665.
[40] CHEN D Q, CHEN Y. Transparent Ce3+: Y3Al5O12 glass ceramic
for organic-resin-free white-light-emitting diodes. Ceramics
International, 2014, 40(9): 15325–15329.
[41] ZHOU Y, CHEN D Q, TIAN W, et al. Impact of Eu3+ dopants on
optical spectroscopy of Ce3+: Y3Al5O12-embedded transparent
glass-ceramics. Journal of the American Ceramic Society, 2015,
98(8): 2445–2450.
[42] CHEN D Q, ZHOU Y, XU W, et al. Enhanced lμminescence of
Mn4+: Y3Al5O12 red phosphor via impurity doping. J. Mater. Chem.,
2016, 4: 1704–1712.
[43] HUANG J, HU X L, SHEN J J, et al. Facile synthesis of a thermally
stable Ce3+: Y3Al5O12 phosphor-in-glass for white LEDs.
CrystEngComm, 2015, 17(37): 7079–7085.
[44] GONG M G, LIANG X J, WANG Y Y, et al. Novel synthesis and
optical characterization of phosphor-converted WLED employing
Ce: YAG-doped glass. Journal of Alloys and Compounds, 2016,
664: 125–132.
[45] YANG L, CHEN M, LV Z, et al. Preparation of a YAG: Ce phosphor
glass by screen-printing technology and its application in
LED packaging. Optics Letters, 2013, 38(13): 2240–2243.
[46] KIM J S, KWON O H, JANG J W, et al. Long-term stable,
low-temperature remote silicate phosphor thick films printed on a
glass substrate. ACS Combinatorial Science, 2015, 17(4):234–238.

[47] JANG J W, KIM J S, KWON O H, et al. UV-curable silicate
phosphor planar films printed on glass substrate for white light
emitting diodes. Optics Letters, 2015, 40(16): 3723–3726.
[48] WANG F Y, LIN Y, SHI H, et al. Introduction on the fabrication
technique of phosphor in glass by tape-casting and investigation on
the chromaticity property. Optics Express, 2014, 22(17):
1355–1362.
[49] SHVALEVA M A, SHULGA E, KINK I, et al. Na2SiO3 liquid
glass-based phosphor material for white LEDs. Physica Status
Solidi (a), 2015, 212(12): 2964–2967.
[50] SEO J, KIM S, KIM Y, et al. Effect of glass refractive index on
light extraction efficiency of light-emitting diodes. Journal of the
American Ceramic Society, 2014, 97(9): 2789–2793.
[51] XU J, HASSAN D A, ZENG R J, et al. Lu3Al5O12: Ce @ SiO2
phosphor-in-glass: Its facile synthesis, reduced thermal/chemical
degradation and application in high-power white LEDs. Journal of
the European Ceramic Society, 2016, 36: 2017–2025.
[52] WANG S, CHEN X, CHEN M, et al. Improvement in angular color
uniformity of white light-emitting diodes using screen- printed
multilayer phosphor-in-glass. Applied Optics, 2014, 53(36):
8492–8498.
[53] KIM S, YIE H, CHOI S, et al. Pore characteristics for improving
lμminous efficacy of phosphor-in-glass. Optics Express, 2015,
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔